Сервис по продаже автомобилей с пробегом «Не бит, не крашен» разрабатывает приложение для привлечения новых клиентов. В нём можно быстро узнать рыночную стоимость своего автомобиля. В вашем распоряжении исторические данные: технические характеристики, комплектации и цены автомобилей. Вам нужно построить модель для определения стоимости.
Заказчику важны:
- качество предсказания;
- скорость предсказания;
- время обучения.
Инструкция по выполнению проекта¶
Чтобы усилить исследование, не ограничивайтесь градиентным бустингом. Попробуйте более простые модели — иногда они работают лучше. Эти редкие случаи легко пропустить, если всегда применять только бустинг.
Поэкспериментируйте и сравните характеристики моделей: время обучения, время предсказания, точность результата.
Основные шаги:
- Загрузите данные, путь к файлу: /datasets/autos.csv.
- Изучите данные. Заполните пропущенные значения и обработайте аномалии в столбцах. Если среди признаков имеются неинформативные, удалите их.
- Подготовьте выборки для обучения моделей.
- Обучите разные модели, одна из которых — LightGBM, как минимум одна — не бустинг. Для каждой модели попробуйте разные гиперпараметры.
- Проанализируйте время обучения, время предсказания и качество моделей.
- Опираясь на критерии заказчика, выберете лучшую модель, проверьте её качество на тестовой выборке.
Примечания:
- Для оценки качества моделей применяйте метрику RMSE.
- Значение метрики RMSE должно быть меньше 2500.
- Самостоятельно освойте библиотеку LightGBM и её средствами постройте модели градиентного бустинга.
- Время выполнения ячейки кода Jupyter Notebook можно получить специальной командой. Найдите её.
- Модель градиентного бустинга может долго обучаться, поэтому измените у неё только два-три параметра.
- Если перестанет работать Jupyter Notebook, удалите лишние переменные оператором
del.
Описание данных¶
Данные находятся в файле /datasets/autos.csv.
Признаки
DateCrawled— дата скачивания анкеты из базыVehicleType— тип автомобильного кузоваRegistrationYear— год регистрации автомобиляGearbox— тип коробки передачPower— мощность (л. с.)Model— модель автомобиляKilometer— пробег (км)RegistrationMonth— месяц регистрации автомобиляFuelType— тип топливаBrand— марка автомобиляRepaired— была машина в ремонте или нетDateCreated— дата создания анкетыNumberOfPictures— количество фотографий автомобиляPostalCode— почтовый индекс владельца анкеты (пользователя)LastSeen— дата последней активности пользователя
Целевой признак
Price— цена (евро)
Подготовка данных¶
Настройка тетради¶
# Базовые библиотеки
import pandas as pd # Датафреймы
import numpy as np # Математика для массивов
from math import factorial # Факториалы
from scipy import stats as st # Статистика
import os # Библиотека для оптимизации чтения данных из файла
import time # Расчет времени выполнения функций
# Pipeline (пайплайн)
from sklearn.pipeline import(
Pipeline, # Pipeline с ручным вводом названий шагов.
make_pipeline # Pipeline с автоматическим названием шагов.
)
# Функция для поддержки экспериментальной функции HavingGridSearchSV
from sklearn.experimental import enable_halving_search_cv
# Ускоренная автоматизация поиска лучших моделей и их параметров
from sklearn.model_selection import HalvingGridSearchCV
# Ускоренная автоматизация рандомного поиска лучших моделей и их параметров
from sklearn.model_selection import HalvingRandomSearchCV
# Автоматизация раздельного декодирования признаков
from sklearn.compose import(
make_column_selector,
make_column_transformer,
ColumnTransformer
)
# Обработка данных для машинного обучения
# Стандартизация данных
import re
#! pip install sklearn.preprocessing
from sklearn.preprocessing import(
OneHotEncoder, # Создание отдельных столбцов для каждого категориального значения, drop='first' (удаление первого столбца против dummy-ловушки), sparse=False (?)
OrdinalEncoder, # Кодирование порядковых категориальных признаков
#TargetEncoder, # Кодирование категорий на основе таргетов (ошибка, модуль не найден)
LabelEncoder,
StandardScaler,
MinMaxScaler
)
# Кодирование категорий на основе таргетов
!pip install -U category_encoders
from category_encoders.target_encoder import TargetEncoder
# Другие функции предобработки данных
from sklearn.impute import KNNImputer # Заполнение пропусков в данных методом k-блжиайших соседей.
from sklearn.utils import shuffle # Перемешивание данных для уравновешивания их в разных выборках
from statsmodels.stats.outliers_influence import variance_inflation_factor # Коэффициент инфляции дисперсии (5 и более - признак коррелирует со всеми остальными, его можно удалить и выразить через другие признаки)
from sklearn.model_selection import(
GridSearchCV, # Поиск гиперпараметров по сетке (GridSearch)
train_test_split, # Разделение выборок с целевыми и нецелевыми признаками на обучающую и тестовую
validation_curve,
StratifiedKFold, # Кроссвалидация с указанием количества фолдов (частей, на которые будет разбита обучающая выборка, одна из которых будет участвовать в валидации)
KFold, # Кроссвалидация
cross_val_score # Оценка качества модели на кроссвалидации
)
# Различные модели машинного обучения (в данном проекте требуется регрессия)
# (есть разбор на https://russianblogs.com/article/83691573909/)
# Линейная модель
from sklearn.linear_model import(
#LogisticRegression, # Линейная классификация
LinearRegression, # Линейная регрессия
Ridge , # Линейная регрессия. "Хребтовая" регрессия (метод наименьших квадратов)
BayesianRidge , # Линейная регрессия. Байесовская "хребтовая" регрессия (максимизации предельного логарифмического правдоподобия)
SGDRegressor # Линейная регрессия. SGD - Стохастический градиентный спуск (минимизирует регуляризованные эмпирические потери за счет стохастического градиентного спуска)
)
# Решающее дерево
from sklearn.tree import(
#DecisionTreeClassifier, # Решающее дерево. Классификация
DecisionTreeRegressor # Решающее дерево. Регрессия
)
# Случайный лес
from sklearn.ensemble import(
#RandomForestClassifier, # Случайный лес. Классификация
RandomForestRegressor # Случайный лес. Регрессия
)
# Машина опорных векторов
from sklearn.svm import(
SVR # # Линейная модель. Регрессия с использованием опорных векторов
)
# Нейронная сеть
from sklearn.neural_network import(
MLPRegressor # Нейронная сеть. Регрессия
)
# CatBoost (made in Yandex)
from catboost import(
CatBoostRegressor # CatBoost (Яндекс). Регрессия
)
# LightGBM
from lightgbm import(
LGBMRegressor # LightGBM. Регрессия
)
# Метрики (Показатели качества моделей)
from sklearn.metrics import(
# Метрики для моделей регрессии
mean_absolute_error, # MAE, Средняя абсолютная ошибка (не чувствительная к выбросам)
mean_absolute_percentage_error, # MAPE, Средняя абсолютная ошибка в % (универсальная в %)
mean_squared_error, # MSE, Средняя квадратичная ошибка (дисперсия, чувствительная к выбросам), RMSE (сигма) = mean_squared_error(test_y, preds, squared=False)
r2_score, # R^2, Коэффициент детерминации (универсальная в %, чувствительная к выбросам, может быть отрицательной и возвращать NaN)
# Другое
make_scorer, # Функция для использования собственных функций в параметре scoring функции HalvingGridSearchCV
ConfusionMatrixDisplay
)
# Визуализация графиков
import seaborn as sns
import matplotlib
%matplotlib inline
from matplotlib import pyplot as plt
from matplotlib import rcParams, rcParamsDefault
from pandas.plotting import scatter_matrix
# Для поиска совпадений
# в названиях населённых пунктов
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
# Улучшенная функция
# определения корреляции
# (возвращает сообщение о том,
# что модуль не найден)
!pip3 install phik
import phik
Collecting category_encoders
Downloading category_encoders-2.6.2-py2.py3-none-any.whl (81 kB)
|████████████████████████████████| 81 kB 1.1 MB/s eta 0:00:011
Requirement already satisfied: scikit-learn>=0.20.0 in /opt/conda/lib/python3.9/site-packages (from category_encoders) (0.24.1)
Requirement already satisfied: scipy>=1.0.0 in /opt/conda/lib/python3.9/site-packages (from category_encoders) (1.9.1)
Requirement already satisfied: patsy>=0.5.1 in /opt/conda/lib/python3.9/site-packages (from category_encoders) (0.5.2)
Requirement already satisfied: statsmodels>=0.9.0 in /opt/conda/lib/python3.9/site-packages (from category_encoders) (0.13.2)
Requirement already satisfied: pandas>=1.0.5 in /opt/conda/lib/python3.9/site-packages (from category_encoders) (1.2.4)
Requirement already satisfied: numpy>=1.14.0 in /opt/conda/lib/python3.9/site-packages (from category_encoders) (1.21.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /opt/conda/lib/python3.9/site-packages (from pandas>=1.0.5->category_encoders) (2.8.1)
Requirement already satisfied: pytz>=2017.3 in /opt/conda/lib/python3.9/site-packages (from pandas>=1.0.5->category_encoders) (2021.1)
Requirement already satisfied: six in /opt/conda/lib/python3.9/site-packages (from patsy>=0.5.1->category_encoders) (1.16.0)
Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/lib/python3.9/site-packages (from scikit-learn>=0.20.0->category_encoders) (3.1.0)
Requirement already satisfied: joblib>=0.11 in /opt/conda/lib/python3.9/site-packages (from scikit-learn>=0.20.0->category_encoders) (1.1.0)
Requirement already satisfied: packaging>=21.3 in /opt/conda/lib/python3.9/site-packages (from statsmodels>=0.9.0->category_encoders) (21.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.9/site-packages (from packaging>=21.3->statsmodels>=0.9.0->category_encoders) (2.4.7)
Installing collected packages: category-encoders
Successfully installed category-encoders-2.6.2
/opt/conda/lib/python3.9/site-packages/fuzzywuzzy/fuzz.py:11: UserWarning: Using slow pure-python SequenceMatcher. Install python-Levenshtein to remove this warning
warnings.warn('Using slow pure-python SequenceMatcher. Install python-Levenshtein to remove this warning')
Collecting phik
Downloading phik-0.12.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (679 kB)
|████████████████████████████████| 679 kB 953 kB/s eta 0:00:01
Requirement already satisfied: joblib>=0.14.1 in /opt/conda/lib/python3.9/site-packages (from phik) (1.1.0)
Requirement already satisfied: numpy>=1.18.0 in /opt/conda/lib/python3.9/site-packages (from phik) (1.21.1)
Requirement already satisfied: pandas>=0.25.1 in /opt/conda/lib/python3.9/site-packages (from phik) (1.2.4)
Requirement already satisfied: matplotlib>=2.2.3 in /opt/conda/lib/python3.9/site-packages (from phik) (3.3.4)
Requirement already satisfied: scipy>=1.5.2 in /opt/conda/lib/python3.9/site-packages (from phik) (1.9.1)
Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.9/site-packages (from matplotlib>=2.2.3->phik) (1.4.4)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /opt/conda/lib/python3.9/site-packages (from matplotlib>=2.2.3->phik) (2.4.7)
Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.9/site-packages (from matplotlib>=2.2.3->phik) (0.11.0)
Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.9/site-packages (from matplotlib>=2.2.3->phik) (2.8.1)
Requirement already satisfied: pillow>=6.2.0 in /opt/conda/lib/python3.9/site-packages (from matplotlib>=2.2.3->phik) (8.4.0)
Requirement already satisfied: pytz>=2017.3 in /opt/conda/lib/python3.9/site-packages (from pandas>=0.25.1->phik) (2021.1)
Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.9/site-packages (from python-dateutil>=2.1->matplotlib>=2.2.3->phik) (1.16.0)
Installing collected packages: phik
Successfully installed phik-0.12.3
# Отображение всех столбцов таблицы
pd.set_option('display.max_columns', None)
# Обязательно для нормального отображения графиков plt
rcParams['figure.figsize'] = 10, 6
%config InlineBackend.figure_format = 'svg'
# Дополнительно и не обязательно для декорирования графиков
factor = .8
default_dpi = rcParamsDefault['figure.dpi']
rcParams['figure.dpi'] = default_dpi * factor
# Глобальная переменная
# для функций со случайными значениями
STATE = 42
Загрузка и изучение данных¶
# Загрузка данных
def read_csv_file(path1, path2):
if os.path.exists(path1):
data = pd.read_csv(path1)
elif os.path.exists(path2):
data = pd.read_csv(path2)
else:
print('Файл не найден')
return data
data = read_csv_file(
'/datasets/autos.csv',
'datasets/autos.csv'
)
# Первичный анализ данных
print(data.info())
data.head(10)
<class 'pandas.core.frame.DataFrame'> RangeIndex: 354369 entries, 0 to 354368 Data columns (total 16 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 DateCrawled 354369 non-null object 1 Price 354369 non-null int64 2 VehicleType 316879 non-null object 3 RegistrationYear 354369 non-null int64 4 Gearbox 334536 non-null object 5 Power 354369 non-null int64 6 Model 334664 non-null object 7 Kilometer 354369 non-null int64 8 RegistrationMonth 354369 non-null int64 9 FuelType 321474 non-null object 10 Brand 354369 non-null object 11 Repaired 283215 non-null object 12 DateCreated 354369 non-null object 13 NumberOfPictures 354369 non-null int64 14 PostalCode 354369 non-null int64 15 LastSeen 354369 non-null object dtypes: int64(7), object(9) memory usage: 43.3+ MB None
| DateCrawled | Price | VehicleType | RegistrationYear | Gearbox | Power | Model | Kilometer | RegistrationMonth | FuelType | Brand | Repaired | DateCreated | NumberOfPictures | PostalCode | LastSeen | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 2016-03-24 11:52:17 | 480 | NaN | 1993 | manual | 0 | golf | 150000 | 0 | petrol | volkswagen | NaN | 2016-03-24 00:00:00 | 0 | 70435 | 2016-04-07 03:16:57 |
| 1 | 2016-03-24 10:58:45 | 18300 | coupe | 2011 | manual | 190 | NaN | 125000 | 5 | gasoline | audi | yes | 2016-03-24 00:00:00 | 0 | 66954 | 2016-04-07 01:46:50 |
| 2 | 2016-03-14 12:52:21 | 9800 | suv | 2004 | auto | 163 | grand | 125000 | 8 | gasoline | jeep | NaN | 2016-03-14 00:00:00 | 0 | 90480 | 2016-04-05 12:47:46 |
| 3 | 2016-03-17 16:54:04 | 1500 | small | 2001 | manual | 75 | golf | 150000 | 6 | petrol | volkswagen | no | 2016-03-17 00:00:00 | 0 | 91074 | 2016-03-17 17:40:17 |
| 4 | 2016-03-31 17:25:20 | 3600 | small | 2008 | manual | 69 | fabia | 90000 | 7 | gasoline | skoda | no | 2016-03-31 00:00:00 | 0 | 60437 | 2016-04-06 10:17:21 |
| 5 | 2016-04-04 17:36:23 | 650 | sedan | 1995 | manual | 102 | 3er | 150000 | 10 | petrol | bmw | yes | 2016-04-04 00:00:00 | 0 | 33775 | 2016-04-06 19:17:07 |
| 6 | 2016-04-01 20:48:51 | 2200 | convertible | 2004 | manual | 109 | 2_reihe | 150000 | 8 | petrol | peugeot | no | 2016-04-01 00:00:00 | 0 | 67112 | 2016-04-05 18:18:39 |
| 7 | 2016-03-21 18:54:38 | 0 | sedan | 1980 | manual | 50 | other | 40000 | 7 | petrol | volkswagen | no | 2016-03-21 00:00:00 | 0 | 19348 | 2016-03-25 16:47:58 |
| 8 | 2016-04-04 23:42:13 | 14500 | bus | 2014 | manual | 125 | c_max | 30000 | 8 | petrol | ford | NaN | 2016-04-04 00:00:00 | 0 | 94505 | 2016-04-04 23:42:13 |
| 9 | 2016-03-17 10:53:50 | 999 | small | 1998 | manual | 101 | golf | 150000 | 0 | NaN | volkswagen | NaN | 2016-03-17 00:00:00 | 0 | 27472 | 2016-03-31 17:17:06 |
# Анализ значений датафрейма
data.hist()
plt.subplots_adjust(wspace=.4, hspace=.5)
data.describe()
| Price | RegistrationYear | Power | Kilometer | RegistrationMonth | NumberOfPictures | PostalCode | |
|---|---|---|---|---|---|---|---|
| count | 354369.000000 | 354369.000000 | 354369.000000 | 354369.000000 | 354369.000000 | 354369.0 | 354369.000000 |
| mean | 4416.656776 | 2004.234448 | 110.094337 | 128211.172535 | 5.714645 | 0.0 | 50508.689087 |
| std | 4514.158514 | 90.227958 | 189.850405 | 37905.341530 | 3.726421 | 0.0 | 25783.096248 |
| min | 0.000000 | 1000.000000 | 0.000000 | 5000.000000 | 0.000000 | 0.0 | 1067.000000 |
| 25% | 1050.000000 | 1999.000000 | 69.000000 | 125000.000000 | 3.000000 | 0.0 | 30165.000000 |
| 50% | 2700.000000 | 2003.000000 | 105.000000 | 150000.000000 | 6.000000 | 0.0 | 49413.000000 |
| 75% | 6400.000000 | 2008.000000 | 143.000000 | 150000.000000 | 9.000000 | 0.0 | 71083.000000 |
| max | 20000.000000 | 9999.000000 | 20000.000000 | 150000.000000 | 12.000000 | 0.0 | 99998.000000 |
# Подсчёт пропусков
data_shape = data.shape[0]
print('Всего объектов:', data_shape)
print()
print('Количество объектов с пропусками в признаках:')
for i in data.columns:
if data_shape - data[i].loc[data[i].notna()].shape[0] > 0:
_a = data_shape - data[i].loc[data[i].notna()].shape[0]
_b = int((1 - data[i].loc[data[i].notna()].shape[0] / data_shape) * 100)
_c = data[i].dtype
print(f'{i} ({_c})\t= {_a} ({_b}%)')
Всего объектов: 354369 Количество объектов с пропусками в признаках: VehicleType (object) = 37490 (10%) Gearbox (object) = 19833 (5%) Model (object) = 19705 (5%) FuelType (object) = 32895 (9%) Repaired (object) = 71154 (20%)
# Анализ значений атрибута "RegistrationYear"
print('Уникальные значения атрибута "RegistrationYear":')
print(np.sort(data['RegistrationYear'].unique()))
print()
print('Количество значений атрибута "RegistrationYear", которые меньше 1990 и больше 2023:',
data.loc[
(data['RegistrationYear'] < 1900) |
(data['RegistrationYear'] > 2023),
'RegistrationYear'
].count(),
'это',
(data.loc[
(data['RegistrationYear'] < 1900) |
(data['RegistrationYear'] > 2023),
'RegistrationYear'
].count() / data_shape) * 100, '%'
)
Уникальные значения атрибута "RegistrationYear": [1000 1001 1039 1111 1200 1234 1253 1255 1300 1400 1500 1600 1602 1688 1800 1910 1915 1919 1920 1923 1925 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2066 2200 2222 2290 2500 2800 2900 3000 3200 3500 3700 3800 4000 4100 4500 4800 5000 5300 5555 5600 5900 5911 6000 6500 7000 7100 7500 7800 8000 8200 8455 8500 8888 9000 9229 9450 9996 9999] Количество значений атрибута "RegistrationYear", которые меньше 1990 и больше 2023: 171 это 0.048254785266205566 %
# Анализ минимальна значений атрибута "Power"
string = f"{data.loc[data['Power'] < .75, 'Power'].count()} объектов имеют мощность двигателя меньше 0.75 л.с. "
string += f"Это {data.loc[data['Power'] < .75, 'Power'].count() / data_shape * 100}% от всего количества объектов. "
print(string, '\n')
print('Примеры подобных объектов:')
data.loc[data['Power'] < .75].head()
print()
40225 объектов имеют мощность двигателя меньше 0.75 л.с. Это 11.351162206626427% от всего количества объектов. Примеры подобных объектов:
# Анализ максимальная значений атрибута "Power"
string = f"{data.loc[data['Power'] > 5000, 'Power'].count()} объектов имеют мощность двигателя больше 5000 л.с. "
string += f"Это {data.loc[data['Power'] > 5000, 'Power'].count() / data_shape * 100}% от всего количества объектов. "
print(string, '\n')
print('Примеры подобных объектов:')
data.loc[data['Power'] > 5000].head()
82 объектов имеют мощность двигателя больше 5000 л.с. Это 0.023139721589642434% от всего количества объектов. Примеры подобных объектов:
| DateCrawled | Price | VehicleType | RegistrationYear | Gearbox | Power | Model | Kilometer | RegistrationMonth | FuelType | Brand | Repaired | DateCreated | NumberOfPictures | PostalCode | LastSeen | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 7661 | 2016-04-02 19:25:25 | 1499 | small | 1999 | manual | 7515 | lupo | 150000 | 4 | petrol | volkswagen | NaN | 2016-04-02 00:00:00 | 0 | 65830 | 2016-04-06 11:46:49 |
| 11039 | 2016-03-25 19:55:32 | 0 | sedan | 1998 | manual | 10317 | other | 150000 | 8 | petrol | fiat | no | 2016-03-25 00:00:00 | 0 | 57520 | 2016-04-01 19:16:33 |
| 25232 | 2016-03-28 19:57:39 | 10900 | bus | 2009 | manual | 10520 | caddy | 150000 | 6 | gasoline | volkswagen | no | 2016-03-28 00:00:00 | 0 | 36272 | 2016-04-07 02:47:02 |
| 33952 | 2016-03-09 11:37:03 | 3740 | small | 2006 | manual | 6920 | aygo | 90000 | 10 | NaN | toyota | no | 2016-03-09 00:00:00 | 0 | 94116 | 2016-03-17 05:16:32 |
| 44520 | 2016-03-10 22:37:21 | 2500 | convertible | 1998 | manual | 7512 | golf | 150000 | 6 | NaN | volkswagen | NaN | 2016-03-10 00:00:00 | 0 | 68239 | 2016-04-05 15:17:50 |
# Анализ уникальных значений
# категориальных текстовых признаков
for i in data.select_dtypes(include='object').columns:
print(f'Уникальные значения признака "{i}":', data[i].unique())
print(f'Всего унимальных значений признака "{i}":', len(data[i].unique()))
print()
Уникальные значения признака "DateCrawled": ['2016-03-24 11:52:17' '2016-03-24 10:58:45' '2016-03-14 12:52:21' ... '2016-03-21 09:50:58' '2016-03-14 17:48:27' '2016-03-19 18:57:12'] Всего унимальных значений признака "DateCrawled": 271174 Уникальные значения признака "VehicleType": [nan 'coupe' 'suv' 'small' 'sedan' 'convertible' 'bus' 'wagon' 'other'] Всего унимальных значений признака "VehicleType": 9 Уникальные значения признака "Gearbox": ['manual' 'auto' nan] Всего унимальных значений признака "Gearbox": 3 Уникальные значения признака "Model": ['golf' nan 'grand' 'fabia' '3er' '2_reihe' 'other' 'c_max' '3_reihe' 'passat' 'navara' 'ka' 'polo' 'twingo' 'a_klasse' 'scirocco' '5er' 'meriva' 'arosa' 'c4' 'civic' 'transporter' 'punto' 'e_klasse' 'clio' 'kadett' 'kangoo' 'corsa' 'one' 'fortwo' '1er' 'b_klasse' 'signum' 'astra' 'a8' 'jetta' 'fiesta' 'c_klasse' 'micra' 'vito' 'sprinter' '156' 'escort' 'forester' 'xc_reihe' 'scenic' 'a4' 'a1' 'insignia' 'combo' 'focus' 'tt' 'a6' 'jazz' 'omega' 'slk' '7er' '80' '147' '100' 'z_reihe' 'sportage' 'sorento' 'v40' 'ibiza' 'mustang' 'eos' 'touran' 'getz' 'a3' 'almera' 'megane' 'lupo' 'r19' 'zafira' 'caddy' 'mondeo' 'cordoba' 'colt' 'impreza' 'vectra' 'berlingo' 'tiguan' 'i_reihe' 'espace' 'sharan' '6_reihe' 'panda' 'up' 'seicento' 'ceed' '5_reihe' 'yeti' 'octavia' 'mii' 'rx_reihe' '6er' 'modus' 'fox' 'matiz' 'beetle' 'c1' 'rio' 'touareg' 'logan' 'spider' 'cuore' 's_max' 'a2' 'galaxy' 'c3' 'viano' 's_klasse' '1_reihe' 'avensis' 'roomster' 'sl' 'kaefer' 'santa' 'cooper' 'leon' '4_reihe' 'a5' '500' 'laguna' 'ptcruiser' 'clk' 'primera' 'x_reihe' 'exeo' '159' 'transit' 'juke' 'qashqai' 'carisma' 'accord' 'corolla' 'lanos' 'phaeton' 'verso' 'swift' 'rav' 'picanto' 'boxster' 'kalos' 'superb' 'stilo' 'alhambra' 'mx_reihe' 'roadster' 'ypsilon' 'cayenne' 'galant' 'justy' '90' 'sirion' 'crossfire' 'agila' 'duster' 'cr_reihe' 'v50' 'c_reihe' 'v_klasse' 'm_klasse' 'yaris' 'c5' 'aygo' 'cc' 'carnival' 'fusion' '911' 'bora' 'forfour' 'm_reihe' 'cl' 'tigra' '300c' 'spark' 'v70' 'kuga' 'x_type' 'ducato' 's_type' 'x_trail' 'toledo' 'altea' 'voyager' 'calibra' 'bravo' 'antara' 'tucson' 'citigo' 'jimny' 'wrangler' 'lybra' 'q7' 'lancer' 'captiva' 'c2' 'discovery' 'freelander' 'sandero' 'note' '900' 'cherokee' 'clubman' 'samara' 'defender' '601' 'cx_reihe' 'legacy' 'pajero' 'auris' 'niva' 's60' 'nubira' 'vivaro' 'g_klasse' 'lodgy' '850' 'range_rover' 'q3' 'serie_2' 'glk' 'charade' 'croma' 'outlander' 'doblo' 'musa' 'move' '9000' 'v60' '145' 'aveo' '200' 'b_max' 'range_rover_sport' 'terios' 'rangerover' 'q5' 'range_rover_evoque' 'materia' 'delta' 'gl' 'kalina' 'amarok' 'elefantino' 'i3' 'kappa' 'serie_3' 'serie_1'] Всего унимальных значений признака "Model": 251 Уникальные значения признака "FuelType": ['petrol' 'gasoline' nan 'lpg' 'other' 'hybrid' 'cng' 'electric'] Всего унимальных значений признака "FuelType": 8 Уникальные значения признака "Brand": ['volkswagen' 'audi' 'jeep' 'skoda' 'bmw' 'peugeot' 'ford' 'mazda' 'nissan' 'renault' 'mercedes_benz' 'opel' 'seat' 'citroen' 'honda' 'fiat' 'mini' 'smart' 'hyundai' 'sonstige_autos' 'alfa_romeo' 'subaru' 'volvo' 'mitsubishi' 'kia' 'suzuki' 'lancia' 'toyota' 'chevrolet' 'dacia' 'daihatsu' 'trabant' 'saab' 'chrysler' 'jaguar' 'daewoo' 'porsche' 'rover' 'land_rover' 'lada'] Всего унимальных значений признака "Brand": 40 Уникальные значения признака "Repaired": [nan 'yes' 'no'] Всего унимальных значений признака "Repaired": 3 Уникальные значения признака "DateCreated": ['2016-03-24 00:00:00' '2016-03-14 00:00:00' '2016-03-17 00:00:00' '2016-03-31 00:00:00' '2016-04-04 00:00:00' '2016-04-01 00:00:00' '2016-03-21 00:00:00' '2016-03-26 00:00:00' '2016-04-07 00:00:00' '2016-03-15 00:00:00' '2016-03-11 00:00:00' '2016-03-20 00:00:00' '2016-03-23 00:00:00' '2016-03-27 00:00:00' '2016-03-12 00:00:00' '2016-03-13 00:00:00' '2016-03-18 00:00:00' '2016-03-10 00:00:00' '2016-03-07 00:00:00' '2016-03-09 00:00:00' '2016-03-08 00:00:00' '2016-04-03 00:00:00' '2016-03-29 00:00:00' '2016-03-25 00:00:00' '2016-03-28 00:00:00' '2016-03-30 00:00:00' '2016-03-22 00:00:00' '2016-02-09 00:00:00' '2016-03-05 00:00:00' '2016-04-02 00:00:00' '2016-03-16 00:00:00' '2016-03-19 00:00:00' '2016-04-05 00:00:00' '2016-03-06 00:00:00' '2016-02-12 00:00:00' '2016-03-03 00:00:00' '2016-03-01 00:00:00' '2016-03-04 00:00:00' '2016-04-06 00:00:00' '2016-02-15 00:00:00' '2016-02-24 00:00:00' '2016-02-27 00:00:00' '2015-03-20 00:00:00' '2016-02-28 00:00:00' '2016-02-17 00:00:00' '2016-01-27 00:00:00' '2016-02-20 00:00:00' '2016-02-29 00:00:00' '2016-02-10 00:00:00' '2016-02-23 00:00:00' '2016-02-21 00:00:00' '2015-11-02 00:00:00' '2016-02-19 00:00:00' '2016-02-26 00:00:00' '2016-02-11 00:00:00' '2016-01-10 00:00:00' '2016-02-06 00:00:00' '2016-02-18 00:00:00' '2016-01-29 00:00:00' '2016-03-02 00:00:00' '2015-12-06 00:00:00' '2016-01-24 00:00:00' '2016-01-30 00:00:00' '2016-02-02 00:00:00' '2016-02-16 00:00:00' '2016-02-13 00:00:00' '2016-02-05 00:00:00' '2016-02-22 00:00:00' '2015-11-17 00:00:00' '2014-03-10 00:00:00' '2016-02-07 00:00:00' '2016-01-23 00:00:00' '2016-02-25 00:00:00' '2016-02-14 00:00:00' '2016-01-02 00:00:00' '2015-09-04 00:00:00' '2015-11-12 00:00:00' '2015-12-27 00:00:00' '2015-11-24 00:00:00' '2016-01-20 00:00:00' '2016-02-03 00:00:00' '2015-12-05 00:00:00' '2015-08-07 00:00:00' '2016-01-28 00:00:00' '2016-01-31 00:00:00' '2016-02-08 00:00:00' '2016-01-07 00:00:00' '2016-01-22 00:00:00' '2016-01-18 00:00:00' '2016-01-08 00:00:00' '2015-11-23 00:00:00' '2016-01-13 00:00:00' '2016-01-17 00:00:00' '2016-01-15 00:00:00' '2015-11-08 00:00:00' '2016-01-26 00:00:00' '2016-02-04 00:00:00' '2016-01-25 00:00:00' '2016-01-16 00:00:00' '2015-08-10 00:00:00' '2016-01-03 00:00:00' '2016-01-19 00:00:00' '2015-12-30 00:00:00' '2016-02-01 00:00:00' '2015-12-17 00:00:00' '2015-11-10 00:00:00' '2016-01-06 00:00:00' '2015-09-09 00:00:00' '2015-06-18 00:00:00'] Всего унимальных значений признака "DateCreated": 109 Уникальные значения признака "LastSeen": ['2016-04-07 03:16:57' '2016-04-07 01:46:50' '2016-04-05 12:47:46' ... '2016-03-19 20:44:43' '2016-03-29 10:17:23' '2016-03-21 10:42:49'] Всего унимальных значений признака "LastSeen": 179150
# Анализ нефвных совпадений
# признака "Model"
for i in data['Model'].fillna('no_value').unique():
print(i, '~', process.extract(i, data['Model'].fillna('no_value').unique(), limit=3))
golf ~ [('golf', 100), ('gl', 67), ('twingo', 60)]
no_value ~ [('no_value', 100), ('altea', 60), ('lupo', 51)]
grand ~ [('grand', 100), ('panda', 60), ('logan', 60)]
fabia ~ [('fabia', 100), ('ibiza', 60), ('agila', 60)]
3er ~ [('3er', 100), ('5er', 67), ('1er', 67)]
2_reihe ~ [('2_reihe', 100), ('3_reihe', 86), ('z_reihe', 86)]
other ~ [('other', 100), ('transporter', 72), ('boxster', 67)]
c_max ~ [('c_max', 100), ('s_max', 80), ('b_max', 80)]
3_reihe ~ [('3_reihe', 100), ('2_reihe', 86), ('z_reihe', 86)]
passat ~ [('passat', 100), ('tt', 60), ('arosa', 55)]
navara ~ [('navara', 100), ('rav', 72), ('niva', 68)]
ka ~ [('ka', 100), ('kadett', 90), ('kangoo', 90)]
polo ~ [('polo', 100), ('doblo', 67), ('toledo', 60)]
twingo ~ [('twingo', 100), ('elefantino', 72), ('citigo', 67)]
a_klasse ~ [('a_klasse', 100), ('e_klasse', 88), ('b_klasse', 88)]
scirocco ~ [('scirocco', 100), ('cc', 90), ('clio', 68)]
5er ~ [('5er', 100), ('3er', 67), ('1er', 67)]
meriva ~ [('meriva', 100), ('materia', 77), ('niva', 68)]
arosa ~ [('arosa', 100), ('carisma', 67), ('corsa', 60)]
c4 ~ [('c4', 100), ('300c', 60), ('a4', 50)]
civic ~ [('civic', 100), ('mii', 60), ('cc', 57)]
transporter ~ [('transporter', 100), ('other', 72), ('note', 68)]
punto ~ [('punto', 100), ('picanto', 67), ('ducato', 55)]
e_klasse ~ [('e_klasse', 100), ('a_klasse', 88), ('b_klasse', 88)]
clio ~ [('clio', 100), ('cl', 90), ('scirocco', 68)]
kadett ~ [('kadett', 100), ('ka', 90), ('tt', 90)]
kangoo ~ [('kangoo', 100), ('ka', 90), ('aygo', 68)]
corsa ~ [('corsa', 100), ('cordoba', 67), ('carisma', 67)]
one ~ [('one', 100), ('phaeton', 72), ('ypsilon', 72)]
fortwo ~ [('fortwo', 100), ('sorento', 62), ('forfour', 62)]
1er ~ [('1er', 100), ('3er', 67), ('5er', 67)]
b_klasse ~ [('b_klasse', 100), ('a_klasse', 88), ('e_klasse', 88)]
signum ~ [('signum', 100), ('insignia', 57), ('tiguan', 50)]
astra ~ [('astra', 100), ('antara', 73), ('rav', 72)]
a8 ~ [('a8', 100), ('meriva', 60), ('corsa', 60)]
jetta ~ [('jetta', 100), ('tt', 90), ('a8', 60)]
fiesta ~ [('fiesta', 100), ('a8', 60), ('a4', 60)]
c_klasse ~ [('c_klasse', 100), ('a_klasse', 88), ('e_klasse', 88)]
micra ~ [('micra', 100), ('rav', 72), ('corsa', 60)]
vito ~ [('vito', 100), ('viano', 67), ('citigo', 60)]
sprinter ~ [('sprinter', 100), ('spider', 71), ('note', 68)]
156 ~ [('156', 100), ('159', 67), ('145', 67)]
escort ~ [('escort', 100), ('colt', 68), ('sorento', 62)]
forester ~ [('forester', 100), ('boxster', 67), ('other', 62)]
xc_reihe ~ [('xc_reihe', 100), ('x_reihe', 93), ('c_reihe', 93)]
scenic ~ [('scenic', 100), ('scirocco', 57), ('seicento', 57)]
a4 ~ [('a4', 100), ('meriva', 60), ('corsa', 60)]
a1 ~ [('a1', 100), ('meriva', 60), ('corsa', 60)]
insignia ~ [('insignia', 100), ('niva', 77), ('a8', 60)]
combo ~ [('combo', 100), ('croma', 60), ('doblo', 60)]
focus ~ [('focus', 100), ('modus', 60), ('fox', 60)]
tt ~ [('tt', 100), ('kadett', 90), ('jetta', 90)]
a6 ~ [('a6', 100), ('meriva', 60), ('corsa', 60)]
jazz ~ [('jazz', 100), ('ka', 45), ('a8', 45)]
omega ~ [('omega', 100), ('megane', 73), ('one', 60)]
slk ~ [('slk', 100), ('sl', 90), ('clk', 67)]
7er ~ [('7er', 100), ('3er', 67), ('5er', 67)]
80 ~ [('80', 100), ('850', 80), ('a8', 50)]
147 ~ [('147', 100), ('145', 67), ('c4', 45)]
100 ~ [('100', 100), ('500', 67), ('900', 67)]
z_reihe ~ [('z_reihe', 100), ('2_reihe', 86), ('3_reihe', 86)]
sportage ~ [('sportage', 100), ('range_rover_sport', 69), ('bora', 68)]
sorento ~ [('sorento', 100), ('seicento', 67), ('fortwo', 62)]
v40 ~ [('v40', 100), ('v50', 67), ('v70', 67)]
ibiza ~ [('ibiza', 100), ('fabia', 60), ('a8', 60)]
mustang ~ [('mustang', 100), ('musa', 73), ('gl', 60)]
eos ~ [('eos', 100), ('mondeo', 72), ('terios', 67)]
touran ~ [('touran', 100), ('bora', 68), ('tiguan', 67)]
getz ~ [('getz', 100), ('sportage', 60), ('voyager', 51)]
a3 ~ [('a3', 100), ('meriva', 60), ('corsa', 60)]
almera ~ [('almera', 100), ('altea', 73), ('rav', 72)]
megane ~ [('megane', 100), ('omega', 73), ('one', 60)]
lupo ~ [('lupo', 100), ('up', 90), ('no_value', 51)]
r19 ~ [('r19', 100), ('159', 67), ('90', 60)]
zafira ~ [('zafira', 100), ('rav', 72), ('calibra', 62)]
caddy ~ [('caddy', 100), ('cayenne', 50), ('charade', 50)]
mondeo ~ [('mondeo', 100), ('eos', 72), ('one', 67)]
cordoba ~ [('cordoba', 100), ('corolla', 71), ('corsa', 67)]
colt ~ [('colt', 100), ('escort', 68), ('cl', 67)]
impreza ~ [('impreza', 100), ('a8', 60), ('a4', 60)]
vectra ~ [('vectra', 100), ('rav', 72), ('a8', 60)]
berlingo ~ [('berlingo', 100), ('golf', 60), ('3er', 60)]
tiguan ~ [('tiguan', 100), ('tigra', 73), ('touran', 67)]
i_reihe ~ [('i_reihe', 100), ('2_reihe', 86), ('3_reihe', 86)]
espace ~ [('espace', 100), ('eos', 60), ('ceed', 60)]
sharan ~ [('sharan', 100), ('samara', 67), ('charade', 62)]
6_reihe ~ [('6_reihe', 100), ('2_reihe', 86), ('3_reihe', 86)]
panda ~ [('panda', 100), ('grand', 60), ('santa', 60)]
up ~ [('up', 100), ('lupo', 90), ('superb', 90)]
seicento ~ [('seicento', 100), ('sorento', 67), ('picanto', 67)]
ceed ~ [('ceed', 100), ('espace', 60), ('cayenne', 55)]
5_reihe ~ [('5_reihe', 100), ('2_reihe', 86), ('3_reihe', 86)]
yeti ~ [('yeti', 100), ('i3', 60), ('x_type', 51)]
octavia ~ [('octavia', 100), ('rav', 60), ('carisma', 57)]
mii ~ [('mii', 100), ('civic', 60), ('micra', 60)]
rx_reihe ~ [('rx_reihe', 100), ('x_reihe', 93), ('xc_reihe', 88)]
6er ~ [('6er', 100), ('3er', 67), ('5er', 67)]
modus ~ [('modus', 100), ('musa', 67), ('focus', 60)]
fox ~ [('fox', 100), ('fortwo', 60), ('forester', 60)]
matiz ~ [('matiz', 100), ('materia', 67), ('elefantino', 54)]
beetle ~ [('beetle', 100), ('leon', 60), ('toledo', 50)]
c1 ~ [('c1', 100), ('300c', 60), ('c4', 50)]
rio ~ [('rio', 100), ('sirion', 90), ('terios', 90)]
touareg ~ [('touareg', 100), ('touran', 62), ('gl', 60)]
logan ~ [('logan', 100), ('leon', 67), ('grand', 60)]
spider ~ [('spider', 100), ('sprinter', 71), ('superb', 67)]
cuore ~ [('cuore', 100), ('corsa', 60), ('one', 60)]
s_max ~ [('s_max', 100), ('c_max', 80), ('b_max', 80)]
a2 ~ [('a2', 100), ('meriva', 60), ('corsa', 60)]
galaxy ~ [('galaxy', 100), ('galant', 67), ('glk', 60)]
c3 ~ [('c3', 100), ('300c', 60), ('c4', 50)]
viano ~ [('viano', 100), ('vivaro', 73), ('vito', 67)]
s_klasse ~ [('s_klasse', 100), ('a_klasse', 88), ('e_klasse', 88)]
1_reihe ~ [('1_reihe', 100), ('2_reihe', 86), ('3_reihe', 86)]
avensis ~ [('avensis', 100), ('aveo', 68), ('eos', 60)]
roomster ~ [('roomster', 100), ('roadster', 75), ('boxster', 67)]
sl ~ [('sl', 100), ('slk', 90), ('focus', 60)]
kaefer ~ [('kaefer', 100), ('ka', 90), ('3er', 60)]
santa ~ [('santa', 100), ('antara', 73), ('panda', 60)]
cooper ~ [('cooper', 100), ('3er', 60), ('5er', 60)]
leon ~ [('leon', 100), ('ypsilon', 77), ('phaeton', 68)]
4_reihe ~ [('4_reihe', 100), ('2_reihe', 86), ('3_reihe', 86)]
a5 ~ [('a5', 100), ('meriva', 60), ('corsa', 60)]
500 ~ [('500', 100), ('100', 67), ('v50', 67)]
laguna ~ [('laguna', 100), ('niva', 60), ('panda', 55)]
ptcruiser ~ [('ptcruiser', 100), ('duster', 66), ('primera', 62)]
clk ~ [('clk', 100), ('cl', 90), ('slk', 67)]
primera ~ [('primera', 100), ('rav', 72), ('sprinter', 67)]
x_reihe ~ [('x_reihe', 100), ('xc_reihe', 93), ('rx_reihe', 93)]
exeo ~ [('exeo', 100), ('eos', 57), ('toledo', 51)]
159 ~ [('159', 100), ('156', 67), ('r19', 67)]
transit ~ [('transit', 100), ('transporter', 67), ('touran', 62)]
juke ~ [('juke', 100), ('no_value', 51), ('range_rover_evoque', 51)]
qashqai ~ [('qashqai', 100), ('i3', 60), ('arosa', 50)]
carisma ~ [('carisma', 100), ('arosa', 67), ('yaris', 67)]
accord ~ [('accord', 100), ('cc', 90), ('cordoba', 62)]
corolla ~ [('corolla', 100), ('cordoba', 71), ('corsa', 67)]
lanos ~ [('lanos', 100), ('arosa', 60), ('eos', 60)]
phaeton ~ [('phaeton', 100), ('one', 72), ('leon', 68)]
verso ~ [('verso', 100), ('range_rover_sport', 72), ('range_rover', 68)]
swift ~ [('swift', 100), ('tt', 60), ('transit', 50)]
rav ~ [('rav', 100), ('bravo', 90), ('navara', 72)]
picanto ~ [('picanto', 100), ('punto', 67), ('seicento', 67)]
boxster ~ [('boxster', 100), ('other', 67), ('forester', 67)]
kalos ~ [('kalos', 100), ('ka', 90), ('arosa', 60)]
superb ~ [('superb', 100), ('up', 90), ('spider', 67)]
stilo ~ [('stilo', 100), ('ypsilon', 67), ('rio', 60)]
alhambra ~ [('alhambra', 100), ('bora', 77), ('rav', 72)]
mx_reihe ~ [('mx_reihe', 100), ('x_reihe', 93), ('m_reihe', 93)]
roadster ~ [('roadster', 100), ('roomster', 75), ('duster', 71)]
ypsilon ~ [('ypsilon', 100), ('leon', 77), ('one', 72)]
cayenne ~ [('cayenne', 100), ('one', 60), ('ceed', 55)]
galant ~ [('galant', 100), ('galaxy', 67), ('tt', 60)]
justy ~ [('justy', 100), ('duster', 55), ('s_type', 55)]
90 ~ [('90', 100), ('900', 90), ('9000', 90)]
sirion ~ [('sirion', 100), ('rio', 90), ('one', 72)]
crossfire ~ [('crossfire', 100), ('eos', 60), ('rio', 60)]
agila ~ [('agila', 100), ('fabia', 60), ('altea', 60)]
duster ~ [('duster', 100), ('roadster', 71), ('ptcruiser', 66)]
cr_reihe ~ [('cr_reihe', 100), ('c_reihe', 93), ('xc_reihe', 88)]
v50 ~ [('v50', 100), ('v40', 67), ('500', 67)]
c_reihe ~ [('c_reihe', 100), ('xc_reihe', 93), ('cr_reihe', 93)]
v_klasse ~ [('v_klasse', 100), ('a_klasse', 88), ('e_klasse', 88)]
m_klasse ~ [('m_klasse', 100), ('a_klasse', 88), ('e_klasse', 88)]
yaris ~ [('yaris', 100), ('auris', 80), ('carisma', 67)]
c5 ~ [('c5', 100), ('300c', 60), ('c4', 50)]
aygo ~ [('aygo', 100), ('kangoo', 68), ('sportage', 51)]
cc ~ [('cc', 100), ('scirocco', 90), ('accord', 90)]
carnival ~ [('carnival', 100), ('niva', 90), ('carisma', 67)]
fusion ~ [('fusion', 100), ('one', 72), ('sirion', 67)]
911 ~ [('911', 100), ('a1', 45), ('c1', 45)]
bora ~ [('bora', 100), ('alhambra', 77), ('calibra', 77)]
forfour ~ [('forfour', 100), ('fortwo', 62), ('fox', 60)]
m_reihe ~ [('m_reihe', 100), ('mx_reihe', 93), ('2_reihe', 86)]
cl ~ [('cl', 100), ('clio', 90), ('clk', 90)]
tigra ~ [('tigra', 100), ('tiguan', 73), ('rav', 72)]
300c ~ [('300c', 100), ('c4', 60), ('c1', 60)]
spark ~ [('spark', 100), ('ka', 60), ('espace', 55)]
v70 ~ [('v70', 100), ('v40', 67), ('v50', 67)]
kuga ~ [('kuga', 100), ('ka', 67), ('a8', 60)]
x_type ~ [('x_type', 100), ('s_type', 83), ('yeti', 51)]
ducato ~ [('ducato', 100), ('picanto', 62), ('punto', 55)]
s_type ~ [('s_type', 100), ('x_type', 83), ('justy', 55)]
x_trail ~ [('x_trail', 100), ('rio', 60), ('rav', 60)]
toledo ~ [('toledo', 100), ('leon', 68), ('polo', 60)]
altea ~ [('altea', 100), ('almera', 73), ('materia', 67)]
voyager ~ [('voyager', 100), ('3er', 60), ('5er', 60)]
calibra ~ [('calibra', 100), ('bora', 77), ('rav', 72)]
bravo ~ [('bravo', 100), ('rav', 90), ('alhambra', 68)]
antara ~ [('antara', 100), ('astra', 73), ('santa', 73)]
tucson ~ [('tucson', 100), ('one', 72), ('fusion', 67)]
citigo ~ [('citigo', 100), ('golf', 60), ('clio', 60)]
jimny ~ [('jimny', 100), ('i3', 45), ('viano', 40)]
wrangler ~ [('wrangler', 100), ('gl', 90), ('range_rover_sport', 68)]
lybra ~ [('lybra', 100), ('rav', 72), ('bora', 67)]
q7 ~ [('q7', 100), ('q3', 50), ('q5', 50)]
lancer ~ [('lancer', 100), ('freelander', 75), ('outlander', 75)]
captiva ~ [('captiva', 100), ('niva', 68), ('carnival', 67)]
c2 ~ [('c2', 100), ('300c', 60), ('c4', 50)]
discovery ~ [('discovery', 100), ('move', 68), ('3er', 60)]
freelander ~ [('freelander', 100), ('lancer', 75), ('defender', 67)]
sandero ~ [('sandero', 100), ('rio', 72), ('mondeo', 62)]
note ~ [('note', 100), ('transporter', 68), ('sprinter', 68)]
900 ~ [('900', 100), ('90', 90), ('9000', 86)]
cherokee ~ [('cherokee', 100), ('3er', 60), ('5er', 60)]
clubman ~ [('clubman', 100), ('cl', 90), ('clk', 60)]
samara ~ [('samara', 100), ('rav', 72), ('navara', 67)]
defender ~ [('defender', 100), ('freelander', 67), ('3er', 60)]
601 ~ [('601', 100), ('s60', 67), ('v60', 67)]
cx_reihe ~ [('cx_reihe', 100), ('x_reihe', 93), ('c_reihe', 93)]
legacy ~ [('legacy', 100), ('omega', 55), ('logan', 55)]
pajero ~ [('pajero', 100), ('rio', 72), ('phaeton', 62)]
auris ~ [('auris', 100), ('yaris', 80), ('carisma', 67)]
niva ~ [('niva', 100), ('carnival', 90), ('insignia', 77)]
s60 ~ [('s60', 100), ('601', 67), ('v60', 67)]
nubira ~ [('nubira', 100), ('rav', 72), ('bora', 68)]
vivaro ~ [('vivaro', 100), ('viano', 73), ('rio', 72)]
g_klasse ~ [('g_klasse', 100), ('a_klasse', 88), ('e_klasse', 88)]
lodgy ~ [('lodgy', 100), ('logan', 60), ('legacy', 55)]
850 ~ [('850', 100), ('80', 80), ('500', 67)]
range_rover ~ [('range_rover', 100), ('rangerover', 95), ('range_rover_sport', 90)]
q3 ~ [('q3', 100), ('a3', 50), ('c3', 50)]
serie_2 ~ [('serie_2', 100), ('serie_3', 86), ('serie_1', 86)]
glk ~ [('glk', 100), ('gl', 90), ('slk', 67)]
charade ~ [('charade', 100), ('sharan', 62), ('rav', 60)]
croma ~ [('croma', 100), ('cordoba', 67), ('carisma', 67)]
outlander ~ [('outlander', 100), ('lancer', 75), ('freelander', 63)]
doblo ~ [('doblo', 100), ('polo', 67), ('combo', 60)]
musa ~ [('musa', 100), ('mustang', 73), ('modus', 67)]
move ~ [('move', 100), ('discovery', 68), ('range_rover', 68)]
9000 ~ [('9000', 100), ('90', 90), ('900', 86)]
v60 ~ [('v60', 100), ('v40', 67), ('v50', 67)]
145 ~ [('145', 100), ('156', 67), ('147', 67)]
aveo ~ [('aveo', 100), ('avensis', 68), ('phaeton', 68)]
200 ~ [('200', 100), ('100', 67), ('500', 67)]
b_max ~ [('b_max', 100), ('c_max', 80), ('s_max', 80)]
range_rover_sport ~ [('range_rover_sport', 100), ('range_rover', 90), ('rangerover', 81)]
terios ~ [('terios', 100), ('rio', 90), ('eos', 67)]
rangerover ~ [('rangerover', 100), ('range_rover', 95), ('range_rover_sport', 81)]
q5 ~ [('q5', 100), ('a5', 50), ('c5', 50)]
range_rover_evoque ~ [('range_rover_evoque', 100), ('range_rover', 90), ('rangerover', 81)]
materia ~ [('materia', 100), ('meriva', 77), ('astra', 67)]
delta ~ [('delta', 100), ('a8', 60), ('jetta', 60)]
gl ~ [('gl', 100), ('wrangler', 90), ('glk', 90)]
kalina ~ [('kalina', 100), ('ka', 90), ('calibra', 62)]
amarok ~ [('amarok', 100), ('samara', 67), ('ka', 60)]
elefantino ~ [('elefantino', 100), ('twingo', 72), ('rio', 60)]
i3 ~ [('i3', 100), ('yeti', 60), ('qashqai', 60)]
kappa ~ [('kappa', 100), ('ka', 90), ('kalina', 55)]
serie_3 ~ [('serie_3', 100), ('serie_2', 86), ('serie_1', 86)]
serie_1 ~ [('serie_1', 100), ('serie_2', 86), ('serie_3', 86)]
# Анализ нефвных совпадений
# признака "Brand"
for i in data['Brand'].unique():
print(i, '~', process.extract(i, data['Brand'].unique(), limit=3))
volkswagen ~ [('volkswagen', 100), ('volvo', 54), ('opel', 45)]
audi ~ [('audi', 100), ('hyundai', 60), ('subaru', 51)]
jeep ~ [('jeep', 100), ('peugeot', 36), ('chevrolet', 31)]
skoda ~ [('skoda', 100), ('honda', 60), ('kia', 50)]
bmw ~ [('bmw', 100), ('volkswagen', 30), ('mazda', 30)]
peugeot ~ [('peugeot', 100), ('opel', 45), ('seat', 45)]
ford ~ [('ford', 100), ('mercedes_benz', 45), ('alfa_romeo', 45)]
mazda ~ [('mazda', 100), ('lada', 67), ('audi', 44)]
nissan ~ [('nissan', 100), ('saab', 51), ('seat', 45)]
renault ~ [('renault', 100), ('seat', 55), ('sonstige_autos', 51)]
mercedes_benz ~ [('mercedes_benz', 100), ('ford', 45), ('seat', 45)]
opel ~ [('opel', 100), ('citroen', 51), ('volkswagen', 45)]
seat ~ [('seat', 100), ('smart', 67), ('renault', 55)]
citroen ~ [('citroen', 100), ('opel', 51), ('chevrolet', 50)]
honda ~ [('honda', 100), ('hyundai', 67), ('skoda', 60)]
fiat ~ [('fiat', 100), ('daihatsu', 68), ('kia', 57)]
mini ~ [('mini', 100), ('nissan', 45), ('mitsubishi', 45)]
smart ~ [('smart', 100), ('seat', 67), ('subaru', 55)]
hyundai ~ [('hyundai', 100), ('honda', 67), ('audi', 60)]
sonstige_autos ~ [('sonstige_autos', 100), ('renault', 51), ('audi', 45)]
alfa_romeo ~ [('alfa_romeo', 100), ('rover', 54), ('land_rover', 50)]
subaru ~ [('subaru', 100), ('smart', 55), ('audi', 51)]
volvo ~ [('volvo', 100), ('volkswagen', 54), ('chevrolet', 54)]
mitsubishi ~ [('mitsubishi', 100), ('audi', 45), ('fiat', 45)]
kia ~ [('kia', 100), ('suzuki', 72), ('lancia', 60)]
suzuki ~ [('suzuki', 100), ('kia', 72), ('subaru', 50)]
lancia ~ [('lancia', 100), ('dacia', 73), ('kia', 60)]
toyota ~ [('toyota', 100), ('sonstige_autos', 40), ('audi', 36)]
chevrolet ~ [('chevrolet', 100), ('chrysler', 59), ('volvo', 54)]
dacia ~ [('dacia', 100), ('lancia', 73), ('daihatsu', 72)]
daihatsu ~ [('daihatsu', 100), ('dacia', 72), ('fiat', 68)]
trabant ~ [('trabant', 100), ('seat', 45), ('fiat', 45)]
saab ~ [('saab', 100), ('nissan', 51), ('seat', 50)]
chrysler ~ [('chrysler', 100), ('chevrolet', 59), ('rover', 46)]
jaguar ~ [('jaguar', 100), ('subaru', 50), ('audi', 45)]
daewoo ~ [('daewoo', 100), ('lada', 45), ('alfa_romeo', 38)]
porsche ~ [('porsche', 100), ('ford', 45), ('seat', 45)]
rover ~ [('rover', 100), ('land_rover', 90), ('alfa_romeo', 54)]
land_rover ~ [('land_rover', 100), ('rover', 90), ('lada', 68)]
lada ~ [('lada', 100), ('land_rover', 68), ('mazda', 67)]
# Проверка коррелируемости
# признаков датафрейма
data.corr()
| Price | RegistrationYear | Power | Kilometer | RegistrationMonth | NumberOfPictures | PostalCode | |
|---|---|---|---|---|---|---|---|
| Price | 1.000000 | 0.026916 | 0.158872 | -0.333199 | 0.110581 | NaN | 0.076055 |
| RegistrationYear | 0.026916 | 1.000000 | -0.000828 | -0.053447 | -0.011619 | NaN | -0.003459 |
| Power | 0.158872 | -0.000828 | 1.000000 | 0.024002 | 0.043380 | NaN | 0.021665 |
| Kilometer | -0.333199 | -0.053447 | 0.024002 | 1.000000 | 0.009571 | NaN | -0.007698 |
| RegistrationMonth | 0.110581 | -0.011619 | 0.043380 | 0.009571 | 1.000000 | NaN | 0.013995 |
| NumberOfPictures | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
| PostalCode | 0.076055 | -0.003459 | 0.021665 | -0.007698 | 0.013995 | NaN | 1.000000 |
Выводы из анализа данных
- Датафрейм содержит 354369 объектов и 16 признаков, 7 из которых являются 64-битными целочисленными, а 9 типа
object. Целевым является целочисленный признакPrice. - В данных есть пропуски. Их количество в разных признаках более 1% от всего количества. Поэтому, их нельзя удалить, а требуется заменить на значение
no_value. - Категориальные признаки
VehicleType,FuelTypeиModelимеют значенияother, которые можно изменить наno_valueтакже, как и пропуски. - По мнению автора данной работы, следующие признаки могут быть неинформативными для моделей машинного обучения:
DateCrawled— дата скачивания анкеты из базы (может влиять на цену относительно даты размещения объявления, но незначительно)RegistrationMonth— месяц регистрации автомобиля (большее значение имеет год регистрации)DateCreated— дата создания анкеты (в целях предсказания цен автомобилей в будущих анкетах эта информация не акутальна)NumberOfPictures— количество фотографий автомобиля (может влиять на цену, т.к. фотографии продоваемого объекта вызывают доверие, но признак содержит только нули)PostalCode— почтовый индекс владельца анкеты (может влиять, если местоположение продавца и покупателя имеет значение, но это не точно)LastSeen— дата последней активности пользователя (может указывать на продолжительность наличия объявления в сети, но этот признак в меньшей степени может влиять на цену, чем другие признаки, описывающие характеристики продаваемого авто)
- Числовые данные не распределены нормально и имеют выбросы.
- Числовые признаки имеют разный диапазон. Для использования в машинном обучении их требуется стандартизировать.
- Корреляция аттрибутов между собой и с целевым признаком слабая. Наибольшей обратной корреляцией с целевым признаком обладают признаки
RegistrationYear. - Анализ текстовых категриальных признаков
ModelиBrandвыявил неявное совпадение значенийrange_roverиrangeroverв признакеModel. Эти значения следует объеденить вrange_rover. - Названия признаков не в «змеином» стиле. Можно привести их в соответствие со «змеиный» стилем.
Данные с пропусками:
VehicleType— тип автомобильного кузоваGearbox— тип коробки передачModel— модель автомобиляFuelType— тип топливаRepaired— была машина в ремонте или нет
Все признаки с пропусками категориального типа object. Для них будет использована категория no_value, указывающая на отсутствие значений.
Ненормальности в данных:
- Атрибут
RegistrationYearсодержит 171 значение с годами производства автомобилей меньше 1900 года и больше 2023 года. Объектами с этими значениями можно принебречь, т.к. их мне 1% от всего количества объектов. Их требуется удалить. - Атрибут
Powerсодержит более 11% значений с мощностью двигателя выходящую за пределы известных значейни. Например, меньше, чем у самого маломощного автомобиля «Benz Patent Motorwagen», у которого мощность двигателя равна 0.75 л.с. (https://1gai-ru.turbopages.org/turbo/1gai.ru/s/blog/cars/513900-desyat-samyh-malomoschnyh-avtomobiley.html, 2023). Также атрибутPowerсодержит значения мощности двигателя более 5000 л.с.. Это превышает мощность самого мощного автомобиля Devel Sixteen (https://www.driver-helper.ru/text/sovetiy/top-10-samyx-moshhnyx-serijnyx-avto-v-mire). Учитывая большую долю подобных объектов и тот факт, что подобные объекты могут появиться в эксплуатационном данных, вместо того, чтобы от них избавляться, в них следует заменить ненормальные значенияPowerна медианные для каждой группы связкиBrandModel.
Предобработка данных¶
# Замена пропусков
# на значение "no_value"
for i in data.columns:
if data_shape - data[i].loc[data[i].notna()].shape[0] > 0:
data.loc[data[i].isna(), i] = 'no_value'
# Замена значения "other" на "no_value"
# для унификации отсутствующей информации
# в признаках "VehicleType" и "FuellType"
data.loc[
(data['VehicleType'] == 'other') |
(data['FuelType'] == 'other') |
(data['Model'] == 'other'),
['VehicleType', 'FuelType', 'Model']
] = 'no_value'
# Определение максимальной даты просмотра объявления
# для установки в качестве предельного срока
# выпуска автомобиля
data['DateCrawled'] = pd.to_datetime(
data['DateCrawled'], format='%Y-%m-%dT%H:%M:%S'
)
date_crawled_max = data['DateCrawled'].max()
date_crawled_max
Timestamp('2016-04-07 14:36:58')
# Удаление неинформативных признаков
data = data.drop([
'DateCrawled',
'RegistrationMonth',
'DateCreated',
'NumberOfPictures',
'PostalCode',
'LastSeen'
], axis=1)
# Удаление ненормальностей в данных
# признака "RegistrationYear"
data = data.loc[
(data['RegistrationYear'] > 1900) &
(data['RegistrationYear'] < date_crawled_max.year)
]
# Замена ненормальностей в данных
# признака "Power" в более 10% объектов
#power_group_median = data.groupby(['Brand', 'Model'])['Power'].median()
power_group_median = data.pivot_table(values='Power', index=['Brand', 'Model'], aggfunc='median')
for i in power_group_median.index:
data['Power'] = np.where(
((data['Power'] < .75) | (data['Power'] > 5000)) &
((data['Power'] == i[0]) & (data['Model'] == i[1])),
power_group_median.loc[i],
data['Power']
)
data['Power']
0 0.0
1 190.0
2 163.0
3 75.0
4 69.0
...
354364 0.0
354365 0.0
354366 101.0
354367 102.0
354368 100.0
Name: Power, Length: 330174, dtype: float64
# Объединение неявно совпадающих значений признака "Model"
# "range_rover" и "rangerover" в "range_rover"
data.loc[data['Model'] == 'rangerover', 'Model'] = 'range_rover'
# Приведение названий признаков датафрейма
# к "змеиному" стилю
data.columns = [re.sub(r'(?<!^)(?=[A-Z])', '_', i).lower() for i in data.columns]
Проверка результатов предобработкаи данных¶
# Проверка изменений
data.info()
data.head(10)
<class 'pandas.core.frame.DataFrame'> Int64Index: 330174 entries, 0 to 354368 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 price 330174 non-null int64 1 vehicle_type 330174 non-null object 2 registration_year 330174 non-null int64 3 gearbox 330174 non-null object 4 power 330174 non-null float64 5 model 330174 non-null object 6 kilometer 330174 non-null int64 7 fuel_type 330174 non-null object 8 brand 330174 non-null object 9 repaired 330174 non-null object dtypes: float64(1), int64(3), object(6) memory usage: 27.7+ MB
| price | vehicle_type | registration_year | gearbox | power | model | kilometer | fuel_type | brand | repaired | |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 480 | no_value | 1993 | manual | 0.0 | golf | 150000 | petrol | volkswagen | no_value |
| 1 | 18300 | coupe | 2011 | manual | 190.0 | no_value | 125000 | gasoline | audi | yes |
| 2 | 9800 | suv | 2004 | auto | 163.0 | grand | 125000 | gasoline | jeep | no_value |
| 3 | 1500 | small | 2001 | manual | 75.0 | golf | 150000 | petrol | volkswagen | no |
| 4 | 3600 | small | 2008 | manual | 69.0 | fabia | 90000 | gasoline | skoda | no |
| 5 | 650 | sedan | 1995 | manual | 102.0 | 3er | 150000 | petrol | bmw | yes |
| 6 | 2200 | convertible | 2004 | manual | 109.0 | 2_reihe | 150000 | petrol | peugeot | no |
| 7 | 0 | no_value | 1980 | manual | 50.0 | no_value | 40000 | no_value | volkswagen | no |
| 8 | 14500 | bus | 2014 | manual | 125.0 | c_max | 30000 | petrol | ford | no_value |
| 9 | 999 | small | 1998 | manual | 101.0 | golf | 150000 | no_value | volkswagen | no_value |
# Проверка изменений
data.hist()
plt.subplots_adjust(wspace=.4, hspace=.5)
data.describe()
| price | registration_year | power | kilometer | |
|---|---|---|---|---|
| count | 330174.000000 | 330174.000000 | 330174.000000 | 330174.000000 |
| mean | 4540.116554 | 2002.089226 | 111.900141 | 127920.581269 |
| std | 4564.387345 | 6.802931 | 182.410180 | 37913.642129 |
| min | 0.000000 | 1910.000000 | 0.000000 | 5000.000000 |
| 25% | 1149.000000 | 1999.000000 | 70.000000 | 125000.000000 |
| 50% | 2850.000000 | 2002.000000 | 105.000000 | 150000.000000 |
| 75% | 6500.000000 | 2007.000000 | 143.000000 | 150000.000000 |
| max | 20000.000000 | 2015.000000 | 20000.000000 | 150000.000000 |
# Анализ уникальных значений
# категориальных текстовых признаков
for i in data.select_dtypes(include='object').columns:
print(f'Уникальные значения признака "{i}":', data[i].unique())
print(f'Всего унимальных значений признака "{i}":', len(data[i].unique()))
print()
Уникальные значения признака "vehicle_type": ['no_value' 'coupe' 'suv' 'small' 'sedan' 'convertible' 'bus' 'wagon'] Всего унимальных значений признака "vehicle_type": 8 Уникальные значения признака "gearbox": ['manual' 'auto' 'no_value'] Всего унимальных значений признака "gearbox": 3 Уникальные значения признака "model": ['golf' 'no_value' 'grand' 'fabia' '3er' '2_reihe' 'c_max' '3_reihe' 'passat' 'navara' 'ka' 'twingo' 'a_klasse' 'scirocco' '5er' 'arosa' 'civic' 'transporter' 'punto' 'e_klasse' 'corsa' 'one' 'fortwo' 'clio' '1er' 'b_klasse' 'signum' 'astra' 'a8' 'jetta' 'polo' 'fiesta' 'c_klasse' 'micra' 'sprinter' '156' 'escort' 'forester' 'xc_reihe' 'scenic' 'a4' 'a1' 'insignia' 'combo' 'focus' 'tt' 'a6' 'jazz' 'omega' 'slk' '7er' '80' '147' '100' 'meriva' 'z_reihe' 'sorento' 'v40' 'ibiza' 'mustang' 'eos' 'vito' 'touran' 'getz' 'a3' 'megane' 'lupo' 'r19' 'caddy' 'mondeo' 'cordoba' 'colt' 'impreza' 'vectra' 'berlingo' 'tiguan' 'sharan' '6_reihe' 'c4' 'panda' 'up' 'i_reihe' 'ceed' 'kangoo' '5_reihe' 'yeti' 'octavia' 'zafira' 'mii' 'rx_reihe' '6er' 'fox' 'matiz' 'beetle' 'rio' 'touareg' 'logan' 'spider' 'cuore' 's_max' 'modus' 'a2' 'galaxy' 'c3' 'viano' 's_klasse' '1_reihe' 'avensis' 'roomster' 'sl' 'kaefer' 'santa' 'cooper' 'leon' '4_reihe' 'a5' 'sportage' 'laguna' 'ptcruiser' 'clk' 'primera' 'espace' 'x_reihe' 'exeo' '159' 'transit' 'juke' 'qashqai' 'carisma' 'accord' 'corolla' 'lanos' 'phaeton' 'verso' 'swift' 'rav' 'picanto' 'boxster' 'kalos' 'superb' 'stilo' 'alhambra' 'mx_reihe' 'roadster' 'ypsilon' 'cayenne' 'galant' 'justy' '90' 'sirion' 'crossfire' 'agila' 'duster' 'v50' '500' 'c_reihe' 'v_klasse' 'm_klasse' 'yaris' 'c5' 'aygo' 'almera' 'seicento' 'cc' 'fusion' '911' 'bora' 'forfour' 'm_reihe' 'cl' 'tigra' '300c' 'cr_reihe' 'spark' 'v70' 'kuga' 'x_type' 'ducato' 's_type' 'x_trail' 'toledo' 'altea' 'voyager' 'calibra' 'carnival' 'bravo' 'antara' 'tucson' 'c1' 'kadett' 'citigo' 'jimny' 'wrangler' 'lybra' 'q7' 'lancer' 'captiva' 'discovery' 'freelander' 'sandero' 'note' '900' 'cherokee' 'clubman' 'samara' 'defender' 'cx_reihe' 'legacy' '601' 'pajero' 'c2' 'niva' 's60' 'nubira' 'vivaro' 'g_klasse' 'auris' 'lodgy' '850' 'range_rover' 'q3' 'glk' 'charade' 'croma' 'outlander' 'doblo' 'musa' 'move' '9000' 'v60' '145' '200' 'b_max' 'range_rover_sport' 'aveo' 'terios' 'q5' 'range_rover_evoque' 'materia' 'delta' 'gl' 'serie_2' 'kalina' 'elefantino' 'i3' 'amarok' 'kappa' 'serie_3' 'serie_1'] Всего унимальных значений признака "model": 249 Уникальные значения признака "fuel_type": ['petrol' 'gasoline' 'no_value' 'lpg' 'cng' 'electric' 'hybrid'] Всего унимальных значений признака "fuel_type": 7 Уникальные значения признака "brand": ['volkswagen' 'audi' 'jeep' 'skoda' 'bmw' 'peugeot' 'ford' 'mazda' 'nissan' 'renault' 'mercedes_benz' 'seat' 'honda' 'fiat' 'opel' 'mini' 'smart' 'sonstige_autos' 'alfa_romeo' 'subaru' 'volvo' 'mitsubishi' 'kia' 'hyundai' 'suzuki' 'lancia' 'citroen' 'toyota' 'chevrolet' 'dacia' 'daihatsu' 'trabant' 'saab' 'chrysler' 'jaguar' 'daewoo' 'porsche' 'rover' 'land_rover' 'lada'] Всего унимальных значений признака "brand": 40 Уникальные значения признака "repaired": ['no_value' 'yes' 'no'] Всего унимальных значений признака "repaired": 3
# Анализ количества
# удалённых объектов
print('Всего удалённо объектов:', data_shape - data.shape[0])
print(f'Доля удалённых объектов: {(1 - data.shape[0] / data_shape)*100}%')
Всего удалённо объектов: 24195 Доля удалённых объектов: 6.827628827578036%
# Анализ коррляции признаков
# после предобработки данных
data.corr()
| price | registration_year | power | kilometer | |
|---|---|---|---|---|
| price | 1.000000 | 0.490673 | 0.164822 | -0.336981 |
| registration_year | 0.490673 | 1.000000 | 0.067158 | -0.220855 |
| power | 0.164822 | 0.067158 | 1.000000 | 0.027308 |
| kilometer | -0.336981 | -0.220855 | 0.027308 | 1.000000 |
# Анализ коррляции признаков
# после предобработки данных
data.phik_matrix()
interval columns not set, guessing: ['price', 'registration_year', 'power', 'kilometer']
| price | vehicle_type | registration_year | gearbox | power | model | kilometer | fuel_type | brand | repaired | |
|---|---|---|---|---|---|---|---|---|---|---|
| price | 1.000000 | 0.276073 | 0.609296 | 0.305974 | 0.005928 | 0.567335 | 0.311190 | 0.263280 | 0.356071 | 0.366852 |
| vehicle_type | 0.276073 | 1.000000 | 0.209775 | 0.336422 | 0.005379 | 0.942273 | 0.164271 | 0.573069 | 0.644883 | 0.207384 |
| registration_year | 0.609296 | 0.209775 | 1.000000 | 0.146034 | 0.000000 | 0.574288 | 0.307834 | 0.274391 | 0.356596 | 0.235890 |
| gearbox | 0.305974 | 0.336422 | 0.146034 | 1.000000 | 0.008489 | 0.626205 | 0.070258 | 0.282519 | 0.523394 | 0.482828 |
| power | 0.005928 | 0.005379 | 0.000000 | 0.008489 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.002184 | 0.013631 |
| model | 0.567335 | 0.942273 | 0.574288 | 0.626205 | 0.000000 | 1.000000 | 0.437192 | 0.711109 | 0.997654 | 0.281206 |
| kilometer | 0.311190 | 0.164271 | 0.307834 | 0.070258 | 0.000000 | 0.437192 | 1.000000 | 0.137378 | 0.276410 | 0.226748 |
| fuel_type | 0.263280 | 0.573069 | 0.274391 | 0.282519 | 0.000000 | 0.711109 | 0.137378 | 1.000000 | 0.355297 | 0.194107 |
| brand | 0.356071 | 0.644883 | 0.356596 | 0.523394 | 0.002184 | 0.997654 | 0.276410 | 0.355297 | 1.000000 | 0.164810 |
| repaired | 0.366852 | 0.207384 | 0.235890 | 0.482828 | 0.013631 | 0.281206 | 0.226748 | 0.194107 | 0.164810 | 1.000000 |
Выводы из преварительной добработки данных
Датафрейм был успешно оптимизирован и подготовлен к использованию в машинном обучении:
- Все неопределенные значения во всех признаках заменены на
no_value. - Удалены неинформативные признаки
DateCrawled,RegistrationMonth,DateCreated,NumberOfPictures,PostalCode,LastSeen. - Удален 171 объект с датой регистрации автомобиля в признаке
RegistrationYearменьше 1900 года и старше 2023 года. - Заменены значения признака
Powerс мощностью двигателя менее 0.75 л.с. и более 5000 на медианные значения группBrand+Model. - Изменены неявно совпадающие значения
range_roverиrangeroverпризнакаModelна значениеrange_rover. - Названия признаков приведены к «змеиному» стилю.
После предвартиельной обработки данных все числовые признаки имеют среднюю и слабую корреляцию между собой и с целевым признаком. Наибольшей прямой корреляцией с целевым признаком обладает признак registration_year, а обратной корреляцией kilometer. После предварительной обработки данных стало очевидным то, что требуется все категориальные признаки кодировать с помощью технологии One Hot Encoding.
Обучение моделей¶
Полезные функции подготовки данных и подбора моделей и их параметров¶
# Функция для кодирования категориальных текстовых признаков
# с помощью технологии One Hot Encoding (pd.get_dummies())
def features_get_dummies(features, column_name):
features = features.join(
pd.get_dummies(
data[column_name],
prefix=column_name,
prefix_sep='_',
drop_first=True
)
)
features = features.drop(column_name, axis=1)
return features
# Функция подготовки данных перед подбором моделей и их параметров
def data_preprocessing(data, target_name):
# Перемешивание объектов
# для их лучшего распределения в выборках
data = shuffle(data, random_state=STATE)
# Разделение датафреймов на целевую и нецелевую выборку
features = data.drop([target_name], axis=1)
target = data[target_name]
# Разделение целевой и нецелевой выборки
# на обучающие и тестовые выборки
features_train, features_test, target_train, target_test = train_test_split(
features,
target,
test_size=.25,
random_state=STATE
)
return features_train, features_test, target_train, target_test
# Функция создания структуры пайплайна
def params_and_model_selection(
features_train,
features_test,
target_train,
target_test,
model_params
):
start_time = time.time()
#funtion_time = %timeit
# Стандартизация числовых значений
numeric_transformer = make_pipeline(
StandardScaler()
)
# Шаг препроцессинга в Пайплайне
preprocessor = make_column_transformer(
(numeric_transformer, features_train.columns)
)
# Pipeline
pipe = Pipeline([
('preprocessor', preprocessor),
('regressor', model_params[0]['regressor'][0])
])
pipe.fit(features_train, target_train)
#predict = pipe.predict(features_test) # спорно, т.к. это должно быть в результате, а здесь должна использоваться валидационная выборка
# Передача функции ошибки через make_scorer в HalvingGridSearchCV
smape_score = make_scorer(
mean_squared_error,
squared=False # Для RMSE
)
# HalvingGridSearchCV
# (о подборе оптимальных параметров:
# https://scikit-learn.ru/3-2-tuning-the-hyper-parameters-of-an-estimator/)
#grid = HalvingRandomSearchCV(
grid = HalvingGridSearchCV(
pipe,
model_params,
cv=4, # параметр KFold для кроссвалидации (обучющая и валидационная выборки 75:25)
n_jobs=-1, # количество параллельно выполняемых заданий (-1 - задействованы все процессоры)
scoring=smape_score, # Передача функции ошибки через make_scorer в HalvingGridSearchCV
error_score='raise', #0 , #
random_state=STATE
)
grid.fit(features_train, target_train)
finish_time = time.time()
funtion_time = finish_time - start_time
return grid, funtion_time
# Вывод на печать результатов модели
def print_model_result(grids, data_times, model_name):
print('Модель :', model_name)
print('RMSE :', grids[-1].best_score_)
print(f'Время : {data_times[-1]} секунд')
print('Параметры:\n', grids[-1].best_estimator_)
print()
print('-'*20)
print()
Функции моделей¶
# LinearRegression
def grids_LinearRegression(
features_train,
features_test,
target_train,
target_test,
grids,
data_times
):
grid, time_best = params_and_model_selection(
features_train,
features_test,
target_train,
target_test,
[{
'regressor': [LinearRegression()] # score: R^2
}]
)
grids.append(grid)
data_times.append(time_best)
return grids, data_times
# DecisionTreeRegressor
def grids_DecisionTreeRegressor(
features_train,
features_test,
target_train,
target_test,
grids,
data_times
):
grids_this = 0
grids_best = 0
funtion_time = 0
time_best = 0
# Поиск "regressor__max_depth"
range_min = 1
range_max = 201
range_step = 20
for i in range(1, 5, 1):
# Поиск лучших параметров
grids_this, funtion_time = params_and_model_selection(
features_train,
features_test,
target_train,
target_test,
[{
'regressor': [DecisionTreeRegressor(random_state=STATE)], # score: R^2
'regressor__max_depth': range(
range_min,
range_max,
range_step
)
}]
)
# Выбор лучшей модели
if grids_best == 0:
grids_best = grids_this
time_best = funtion_time
elif grids_this.best_score_ > grids_best.best_score_:
grids_best = grids_this
time_best = funtion_time
if range_step == 1: break
# Выбор параметров поиска
regressor__max_depth = grids_this.best_params_['regressor__max_depth']
if int(regressor__max_depth - range_step / 2) > 0:
range_min = int(regressor__max_depth - range_step / 2)
else:
range_min = regressor__max_depth
range_max = int(regressor__max_depth + range_step / 2) + 1
range_step = int(range_step / 2)
grids.append(grids_best)
data_times.append(time_best)
return grids, data_times
# RandomForestRegressor
def grids_RandomForestRegressor(
features_train,
features_test,
target_train,
target_test,
grids,
data_times
):
grids_this = 0
grids_best = 0
funtion_time = 0
time_best = 0
# Поиск "regressor__max_depth"
range_min = 20
range_max = 61
range_step = 20
for i in range(1, 5, 1):
# Поиск лучших параметров
grids_this, funtion_time = params_and_model_selection(
features_train,
features_test,
target_train,
target_test,
[{
'regressor': [RandomForestRegressor(random_state=STATE)], # score: R^2
'regressor__max_depth': range(
range_min,
range_max,
range_step
),
'regressor__n_estimators': [1]
}]
)
# Выбор лучшей модели
if grids_best == 0:
grids_best = grids_this
time_best = funtion_time
elif grids_this.best_score_ > grids_best.best_score_:
grids_best = grids_this
time_best = funtion_time
if range_step == 1: break
# Выбор параметров поиска
regressor__max_depth = grids_this.best_params_['regressor__max_depth']
if int(regressor__max_depth - range_step / 2) > 0:
range_min = int(regressor__max_depth - range_step / 2)
else:
range_min = regressor__max_depth
range_max = int(regressor__max_depth + range_step / 2) + 1
range_step = int(range_step / 2)
if range_step == 0: range_step = 1
# Поиск "regressor__n_estimators"
range_min = 10
range_max = 31
range_step = 10
for i in range(1, 5, 1):
# Поиск лучших параметров
grids_this, funtion_time = params_and_model_selection(
features_train,
features_test,
target_train,
target_test,
[{
'regressor': [RandomForestRegressor(random_state=STATE)], # score: R^2
'regressor__max_depth': [regressor__max_depth],
'regressor__n_estimators': range(
range_min,
range_max,
range_step
)
}]
)
# Выбор лучшей модели
if grids_best == 0:
grids_best = grids_this
time_best = funtion_time
elif grids_this.best_score_ > grids_best.best_score_:
grids_best = grids_this
time_best = funtion_time
if range_step == 1: break
# Выбор параметров поиска
regressor__n_estimators = grids_this.best_params_['regressor__n_estimators']
if int(regressor__n_estimators - range_step / 2) > 0:
range_min = int(regressor__n_estimators - range_step / 2)
else:
range_min = regressor__n_estimators
range_max = int(regressor__n_estimators + range_step / 2) + 1
range_step = int(range_step / 10)
if range_step == 0: range_step = 1
grids.append(grids_best)
data_times.append(time_best)
return grids, data_times
# SGDRegressor
def grids_SGDRegressor(
features_train,
features_test,
target_train,
target_test,
grids,
data_times
):
# Поиск лучших параметров
grids_best, time_best = params_and_model_selection(
features_train,
features_test,
target_train,
target_test,
[{
'regressor': [SGDRegressor()]
}]
)
grids.append(grids_best)
data_times.append(time_best)
return grids, data_times
# MLPRegressor
def grids_MLPRegressor(
features_train,
features_test,
target_train,
target_test,
grids,
data_times
):
# Поиск лучших параметров
grids_best, time_best = params_and_model_selection(
features_train,
features_test,
target_train,
target_test,
[{
'regressor': [MLPRegressor()]
}]
)
grids.append(grids_best)
data_times.append(time_best)
return grids, data_times
# CatBoostRegressor
def grids_CatBoostRegressor(
features_train,
features_test,
target_train,
target_test,
grids,
data_times
):
grids_best, time_best = params_and_model_selection(
features_train,
features_test,
target_train,
target_test,
[{
'regressor': [CatBoostRegressor()]
}]
)
grids.append(grids_best)
data_times.append(time_best)
return grids, data_times
# LGBMRegressor
def grids_LGBMRegressor(
features_train,
features_test,
target_train,
target_test,
grids,
data_times
):
# Поиск лучших параметров
grids_this = 0
grids_best = 0
funtion_time = 0
time_best = 0
# Поиск "regressor__max_depth"
range_min = 1
range_max = 201
range_step = 20
for i in range(1, 5, 1):
#print('regressor__max_depth =', range(range_min, range_max, range_step))
# Поиск лучших параметров
grids_this, funtion_time = params_and_model_selection(
features_train,
features_test,
target_train,
target_test,
[{
'regressor': [LGBMRegressor(random_state=STATE)], # score: R^2
'regressor__max_depth': range(
range_min,
range_max,
range_step
),
'regressor__n_estimators': [1]
}]
)
# Выбор лучшей модели
if grids_best == 0:
grids_best = grids_this
time_best = funtion_time
elif grids_this.best_score_ > grids_best.best_score_:
grids_best = grids_this
time_best = funtion_time
if range_step == 1: break
# Выбор параметров поиска
regressor__max_depth = grids_this.best_params_['regressor__max_depth']
if int(regressor__max_depth - range_step / 2) > 0:
range_min = int(regressor__max_depth - range_step / 2)
else:
range_min = regressor__max_depth
range_max = int(regressor__max_depth + range_step / 2) + 1
range_step = int(range_step / 2)
if range_step == 0: range_step = 1
# Поиск "regressor__n_estimators"
range_min = 1
range_max = 51
range_step = 10
for i in range(1, 5, 1):
#print('regressor__n_estimators =', range(range_min, range_max, range_step))
# Поиск лучших параметров
grids_this, funtion_time = params_and_model_selection(
features_train,
features_test,
target_train,
target_test,
[{
'regressor': [LGBMRegressor(random_state=STATE)], # score: R^2
'regressor__max_depth': [regressor__max_depth],
'regressor__n_estimators': range(
range_min,
range_max,
range_step
)
}]
)
# Выбор лучшей модели
if grids_best == 0:
grids_best = grids_this
time_best = funtion_time
elif grids_this.best_score_ > grids_best.best_score_:
grids_best = grids_this
time_best = funtion_time
if range_step == 1: break
# Выбор параметров поиска
regressor__n_estimators = grids_this.best_params_['regressor__n_estimators']
if int(regressor__n_estimators - range_step / 2) > 0:
range_min = int(regressor__n_estimators - range_step / 2)
else:
range_min = regressor__n_estimators
range_max = int(regressor__n_estimators + range_step / 2) + 1
range_step = int(range_step / 10)
if range_step == 0: range_step = 1
grids.append(grids_best)
data_times.append(time_best)
return grids, data_times
Применение функций¶
# Подготовка выборок из датафрейма
# Разделение обучающего датафрейма на целевую и нецелевую выборку
features_train, features_test, target_train, target_test = data_preprocessing(data, 'price')
# Кодирование категориальных текстовых признаков
# с помощью технологии TargetEncoder
features_encoding = ['vehicle_type', 'gearbox', 'model', 'fuel_type', 'brand', 'repaired']
te_fit = TargetEncoder().fit(features_train[features_encoding], target_train)
features_train[features_encoding] = te_fit.transform(features_train[features_encoding])
features_test[features_encoding] = te_fit.transform(features_test[features_encoding])
print(features_train.info())
features_train.head()
<class 'pandas.core.frame.DataFrame'> Int64Index: 247630 entries, 223244 to 257691 Data columns (total 9 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 vehicle_type 247630 non-null float64 1 registration_year 247630 non-null int64 2 gearbox 247630 non-null float64 3 power 247630 non-null float64 4 model 247630 non-null float64 5 kilometer 247630 non-null int64 6 fuel_type 247630 non-null float64 7 brand 247630 non-null float64 8 repaired 247630 non-null float64 dtypes: float64(7), int64(2) memory usage: 18.9 MB None
| vehicle_type | registration_year | gearbox | power | model | kilometer | fuel_type | brand | repaired | |
|---|---|---|---|---|---|---|---|---|---|
| 223244 | 4759.405926 | 2005 | 6967.682167 | 190.0 | 5767.135775 | 150000 | 6756.042179 | 6010.171569 | 5385.242357 |
| 98910 | 3540.618365 | 2000 | 2270.272120 | 0.0 | 3793.928198 | 150000 | 3394.617204 | 3261.835992 | 2672.054560 |
| 62348 | 6827.486197 | 2010 | 4081.965033 | 120.0 | 3223.449143 | 80000 | 3807.829533 | 3147.120726 | 5385.242357 |
| 318127 | 4759.405926 | 2009 | 4081.965033 | 143.0 | 5890.414408 | 125000 | 6756.042179 | 6384.934049 | 5385.242357 |
| 290228 | 4759.405926 | 1993 | 4081.965033 | 45.0 | 2604.409468 | 150000 | 3394.617204 | 4530.331913 | 5385.242357 |
# Поиск лучших моделей и их параметров
data_grids = []
data_times = []
# LinearRegression (dummy-model)
data_grids, data_times = grids_LinearRegression(
features_train,
features_test,
target_train,
target_test,
data_grids,
data_times
)
print_model_result(data_grids, data_times, 'LinearRegression')
Модель : LinearRegression
RMSE : 3069.23279496429
Время : 2.045431137084961 секунд
Параметры:
Pipeline(steps=[('preprocessor',
ColumnTransformer(transformers=[('pipeline',
Pipeline(steps=[('standardscaler',
StandardScaler())]),
Index(['vehicle_type', 'registration_year', 'gearbox', 'power', 'model',
'kilometer', 'fuel_type', 'brand', 'repaired'],
dtype='object'))])),
('regressor', LinearRegression())])
--------------------
# DecisionTreeRegressor
data_grids, data_times = grids_DecisionTreeRegressor(
features_train,
features_test,
target_train,
target_test,
data_grids,
data_times
)
print_model_result(data_grids, data_times, 'DecisionTreeRegressor')
Модель : DecisionTreeRegressor
RMSE : 3520.5951256556477
Время : 14.969941139221191 секунд
Параметры:
Pipeline(steps=[('preprocessor',
ColumnTransformer(transformers=[('pipeline',
Pipeline(steps=[('standardscaler',
StandardScaler())]),
Index(['vehicle_type', 'registration_year', 'gearbox', 'power', 'model',
'kilometer', 'fuel_type', 'brand', 'repaired'],
dtype='object'))])),
('regressor',
DecisionTreeRegressor(max_depth=1, random_state=42))])
--------------------
# SGDRegressor
data_grids, data_times = grids_SGDRegressor(
features_train,
features_test,
target_train,
target_test,
data_grids,
data_times
)
print_model_result(data_grids, data_times, 'SGDRegressor')
Модель : SGDRegressor
RMSE : 3089.779746424787
Время : 5.435046195983887 секунд
Параметры:
Pipeline(steps=[('preprocessor',
ColumnTransformer(transformers=[('pipeline',
Pipeline(steps=[('standardscaler',
StandardScaler())]),
Index(['vehicle_type', 'registration_year', 'gearbox', 'power', 'model',
'kilometer', 'fuel_type', 'brand', 'repaired'],
dtype='object'))])),
('regressor', SGDRegressor())])
--------------------
# CatBoostRegressor
data_grids, data_times = grids_CatBoostRegressor(
features_train,
features_test,
target_train,
target_test,
data_grids,
data_times
)
print_model_result(data_grids, data_times, 'CatBoostRegressor')
Learning rate set to 0.097814
0: learn: 4268.9324355 total: 101ms remaining: 1m 41s
1: learn: 4010.6410460 total: 138ms remaining: 1m 8s
2: learn: 3784.1669481 total: 181ms remaining: 1m
3: learn: 3579.5232253 total: 218ms remaining: 54.4s
4: learn: 3400.3400769 total: 255ms remaining: 50.7s
5: learn: 3242.2229009 total: 299ms remaining: 49.5s
6: learn: 3101.0951468 total: 336ms remaining: 47.6s
7: learn: 2976.0448761 total: 382ms remaining: 47.3s
8: learn: 2865.0184049 total: 418ms remaining: 46s
9: learn: 2769.5971830 total: 455ms remaining: 45s
10: learn: 2688.7300008 total: 496ms remaining: 44.6s
11: learn: 2611.4192577 total: 533ms remaining: 43.8s
12: learn: 2547.1626659 total: 581ms remaining: 44.1s
13: learn: 2486.4814447 total: 618ms remaining: 43.5s
14: learn: 2436.7976506 total: 659ms remaining: 43.3s
15: learn: 2388.2476102 total: 698ms remaining: 42.9s
16: learn: 2349.1750890 total: 734ms remaining: 42.4s
17: learn: 2311.5397711 total: 777ms remaining: 42.4s
18: learn: 2279.0709995 total: 812ms remaining: 41.9s
19: learn: 2249.5200641 total: 853ms remaining: 41.8s
20: learn: 2225.0638599 total: 896ms remaining: 41.8s
21: learn: 2202.5869378 total: 939ms remaining: 41.7s
22: learn: 2181.3138603 total: 989ms remaining: 42s
23: learn: 2162.7987170 total: 1.03s remaining: 41.9s
24: learn: 2146.4960625 total: 1.08s remaining: 42s
25: learn: 2130.0284629 total: 1.11s remaining: 41.8s
26: learn: 2114.8175590 total: 1.16s remaining: 41.9s
27: learn: 2103.0645814 total: 1.21s remaining: 41.9s
28: learn: 2092.1972325 total: 1.25s remaining: 42s
29: learn: 2082.0707635 total: 1.29s remaining: 41.8s
30: learn: 2072.5199001 total: 1.33s remaining: 41.7s
31: learn: 2061.9256277 total: 1.38s remaining: 41.6s
32: learn: 2053.0818270 total: 1.41s remaining: 41.3s
33: learn: 2045.8192642 total: 1.45s remaining: 41.2s
34: learn: 2038.9822441 total: 1.49s remaining: 41s
35: learn: 2033.6254723 total: 1.52s remaining: 40.7s
36: learn: 2028.4506164 total: 1.57s remaining: 40.8s
37: learn: 2020.3179117 total: 1.6s remaining: 40.6s
38: learn: 2015.5523488 total: 1.64s remaining: 40.4s
39: learn: 2010.3228599 total: 1.68s remaining: 40.2s
40: learn: 2004.3267459 total: 1.72s remaining: 40.2s
41: learn: 1998.5867855 total: 1.76s remaining: 40.3s
42: learn: 1994.6349425 total: 1.8s remaining: 40.1s
43: learn: 1991.2172038 total: 1.84s remaining: 40s
44: learn: 1988.5022244 total: 1.88s remaining: 39.9s
45: learn: 1984.3815351 total: 1.92s remaining: 39.8s
46: learn: 1978.7809852 total: 1.96s remaining: 39.8s
47: learn: 1976.1214547 total: 2s remaining: 39.6s
48: learn: 1972.7190666 total: 2.04s remaining: 39.5s
49: learn: 1968.6779676 total: 2.07s remaining: 39.4s
50: learn: 1963.1907207 total: 2.11s remaining: 39.2s
51: learn: 1960.2988615 total: 2.15s remaining: 39.2s
52: learn: 1957.8772666 total: 2.18s remaining: 39s
53: learn: 1955.8311334 total: 2.22s remaining: 39s
54: learn: 1953.0846871 total: 2.26s remaining: 38.8s
55: learn: 1950.5234577 total: 2.29s remaining: 38.6s
56: learn: 1946.2558032 total: 2.34s remaining: 38.7s
57: learn: 1943.7185580 total: 2.37s remaining: 38.5s
58: learn: 1941.8747937 total: 2.41s remaining: 38.4s
59: learn: 1938.4969708 total: 2.45s remaining: 38.4s
60: learn: 1935.7775907 total: 2.48s remaining: 38.2s
61: learn: 1934.4810527 total: 2.52s remaining: 38.1s
62: learn: 1931.2776221 total: 2.55s remaining: 38s
63: learn: 1929.5589586 total: 2.59s remaining: 37.8s
64: learn: 1926.3388558 total: 2.63s remaining: 37.9s
65: learn: 1923.6750746 total: 2.66s remaining: 37.7s
66: learn: 1922.5330800 total: 2.69s remaining: 37.5s
67: learn: 1920.8281168 total: 2.74s remaining: 37.6s
68: learn: 1918.3175340 total: 2.77s remaining: 37.4s
69: learn: 1915.7574885 total: 2.82s remaining: 37.4s
70: learn: 1913.6291187 total: 2.85s remaining: 37.3s
71: learn: 1911.3063450 total: 2.88s remaining: 37.2s
72: learn: 1910.0146675 total: 2.92s remaining: 37.1s
73: learn: 1908.5637534 total: 2.96s remaining: 37s
74: learn: 1906.4780092 total: 2.99s remaining: 36.9s
75: learn: 1905.1691680 total: 3.03s remaining: 36.9s
76: learn: 1903.1997125 total: 3.06s remaining: 36.7s
77: learn: 1901.8821513 total: 3.1s remaining: 36.7s
78: learn: 1900.1337731 total: 3.14s remaining: 36.6s
79: learn: 1899.1992384 total: 3.17s remaining: 36.5s
80: learn: 1897.3895928 total: 3.21s remaining: 36.4s
81: learn: 1895.8139714 total: 3.24s remaining: 36.3s
82: learn: 1893.6768162 total: 3.28s remaining: 36.2s
83: learn: 1891.4986383 total: 3.32s remaining: 36.2s
84: learn: 1889.8489640 total: 3.36s remaining: 36.2s
85: learn: 1888.8394635 total: 3.4s remaining: 36.1s
86: learn: 1887.7631764 total: 3.43s remaining: 36s
87: learn: 1886.0409055 total: 3.47s remaining: 35.9s
88: learn: 1884.4447070 total: 3.51s remaining: 35.9s
89: learn: 1882.9561620 total: 3.54s remaining: 35.8s
90: learn: 1881.6691320 total: 3.58s remaining: 35.8s
91: learn: 1879.9898022 total: 3.63s remaining: 35.8s
92: learn: 1879.0661497 total: 3.66s remaining: 35.7s
93: learn: 1877.3728090 total: 3.71s remaining: 35.7s
94: learn: 1876.1311891 total: 3.74s remaining: 35.7s
95: learn: 1874.7015338 total: 3.78s remaining: 35.6s
96: learn: 1873.5465573 total: 3.82s remaining: 35.6s
97: learn: 1872.7624631 total: 3.85s remaining: 35.5s
98: learn: 1870.7938629 total: 3.9s remaining: 35.5s
99: learn: 1869.2673785 total: 3.93s remaining: 35.4s
100: learn: 1867.9182654 total: 3.97s remaining: 35.4s
101: learn: 1866.6275050 total: 4.02s remaining: 35.4s
102: learn: 1864.8356438 total: 4.05s remaining: 35.3s
103: learn: 1863.8575595 total: 4.09s remaining: 35.3s
104: learn: 1862.9924644 total: 4.13s remaining: 35.2s
105: learn: 1862.4445378 total: 4.16s remaining: 35.1s
106: learn: 1861.5129977 total: 4.2s remaining: 35.1s
107: learn: 1859.9204173 total: 4.24s remaining: 35s
108: learn: 1858.7382351 total: 4.28s remaining: 35s
109: learn: 1857.3892643 total: 4.31s remaining: 34.9s
110: learn: 1856.6283950 total: 4.35s remaining: 34.8s
111: learn: 1855.4247124 total: 4.39s remaining: 34.8s
112: learn: 1854.3838611 total: 4.43s remaining: 34.8s
113: learn: 1853.5954063 total: 4.46s remaining: 34.7s
114: learn: 1852.6219831 total: 4.51s remaining: 34.7s
115: learn: 1851.9004090 total: 4.55s remaining: 34.7s
116: learn: 1851.2159787 total: 4.59s remaining: 34.6s
117: learn: 1850.5915299 total: 4.62s remaining: 34.5s
118: learn: 1849.8976949 total: 4.65s remaining: 34.5s
119: learn: 1848.8652075 total: 4.7s remaining: 34.4s
120: learn: 1847.8232751 total: 4.73s remaining: 34.4s
121: learn: 1847.2230104 total: 4.77s remaining: 34.3s
122: learn: 1846.5371880 total: 4.8s remaining: 34.3s
123: learn: 1845.8262919 total: 4.84s remaining: 34.2s
124: learn: 1845.3827261 total: 4.88s remaining: 34.1s
125: learn: 1844.6014292 total: 4.91s remaining: 34.1s
126: learn: 1843.7578276 total: 4.95s remaining: 34s
127: learn: 1843.0869271 total: 4.99s remaining: 34s
128: learn: 1841.9619538 total: 5.02s remaining: 33.9s
129: learn: 1841.2991078 total: 5.06s remaining: 33.9s
130: learn: 1840.4296282 total: 5.1s remaining: 33.8s
131: learn: 1839.1957353 total: 5.13s remaining: 33.7s
132: learn: 1838.1950594 total: 5.17s remaining: 33.7s
133: learn: 1837.3731522 total: 5.21s remaining: 33.6s
134: learn: 1836.7928530 total: 5.24s remaining: 33.6s
135: learn: 1835.7954051 total: 5.28s remaining: 33.6s
136: learn: 1834.9445079 total: 5.31s remaining: 33.5s
137: learn: 1834.0497983 total: 5.36s remaining: 33.5s
138: learn: 1833.0138969 total: 5.39s remaining: 33.4s
139: learn: 1832.2018222 total: 5.42s remaining: 33.3s
140: learn: 1831.6937920 total: 5.46s remaining: 33.3s
141: learn: 1831.1211248 total: 5.49s remaining: 33.2s
142: learn: 1830.3238911 total: 5.53s remaining: 33.1s
143: learn: 1829.7812267 total: 5.57s remaining: 33.1s
144: learn: 1829.0570199 total: 5.6s remaining: 33s
145: learn: 1828.4505519 total: 5.64s remaining: 33s
146: learn: 1828.0967705 total: 5.68s remaining: 33s
147: learn: 1827.0128422 total: 5.72s remaining: 32.9s
148: learn: 1826.1013723 total: 5.76s remaining: 32.9s
149: learn: 1825.4182648 total: 5.8s remaining: 32.9s
150: learn: 1824.6176075 total: 5.84s remaining: 32.8s
151: learn: 1823.8060667 total: 5.88s remaining: 32.8s
152: learn: 1823.1678913 total: 5.92s remaining: 32.7s
153: learn: 1822.7543456 total: 5.95s remaining: 32.7s
154: learn: 1822.1850611 total: 5.98s remaining: 32.6s
155: learn: 1821.5692808 total: 6.03s remaining: 32.6s
156: learn: 1820.9095442 total: 6.06s remaining: 32.6s
157: learn: 1820.4462638 total: 6.09s remaining: 32.5s
158: learn: 1819.8860522 total: 6.14s remaining: 32.5s
159: learn: 1819.2441115 total: 6.17s remaining: 32.4s
160: learn: 1818.4616216 total: 6.22s remaining: 32.4s
161: learn: 1817.9427457 total: 6.26s remaining: 32.4s
162: learn: 1817.4403200 total: 6.29s remaining: 32.3s
163: learn: 1816.9666062 total: 6.33s remaining: 32.3s
164: learn: 1816.2439721 total: 6.37s remaining: 32.2s
165: learn: 1815.8090863 total: 6.41s remaining: 32.2s
166: learn: 1815.3273199 total: 6.44s remaining: 32.1s
167: learn: 1814.5158132 total: 6.48s remaining: 32.1s
168: learn: 1814.1986002 total: 6.52s remaining: 32.1s
169: learn: 1813.6626373 total: 6.56s remaining: 32s
170: learn: 1812.9822789 total: 6.61s remaining: 32s
171: learn: 1812.5582427 total: 6.64s remaining: 32s
172: learn: 1811.8354672 total: 6.67s remaining: 31.9s
173: learn: 1811.3725020 total: 6.71s remaining: 31.9s
174: learn: 1810.8608786 total: 6.75s remaining: 31.8s
175: learn: 1810.2449498 total: 6.79s remaining: 31.8s
176: learn: 1809.6423035 total: 6.83s remaining: 31.7s
177: learn: 1809.2480727 total: 6.86s remaining: 31.7s
178: learn: 1808.6675072 total: 6.91s remaining: 31.7s
179: learn: 1808.0039389 total: 6.94s remaining: 31.6s
180: learn: 1807.6046747 total: 6.98s remaining: 31.6s
181: learn: 1807.3519822 total: 7.01s remaining: 31.5s
182: learn: 1806.8990466 total: 7.05s remaining: 31.5s
183: learn: 1806.2886441 total: 7.1s remaining: 31.5s
184: learn: 1805.5854407 total: 7.14s remaining: 31.5s
185: learn: 1805.0783816 total: 7.18s remaining: 31.4s
186: learn: 1804.5242344 total: 7.22s remaining: 31.4s
187: learn: 1804.3149081 total: 7.25s remaining: 31.3s
188: learn: 1803.7452142 total: 7.29s remaining: 31.3s
189: learn: 1803.4434408 total: 7.33s remaining: 31.2s
190: learn: 1803.1064225 total: 7.37s remaining: 31.2s
191: learn: 1802.6029852 total: 7.4s remaining: 31.2s
192: learn: 1802.1195912 total: 7.44s remaining: 31.1s
193: learn: 1801.6937097 total: 7.48s remaining: 31.1s
194: learn: 1801.2427150 total: 7.51s remaining: 31s
195: learn: 1800.9240433 total: 7.55s remaining: 31s
196: learn: 1800.5739351 total: 7.59s remaining: 31s
197: learn: 1800.1988974 total: 7.63s remaining: 30.9s
198: learn: 1799.8508234 total: 7.67s remaining: 30.9s
199: learn: 1799.1884678 total: 7.71s remaining: 30.8s
200: learn: 1798.5902332 total: 7.74s remaining: 30.8s
201: learn: 1798.0212189 total: 7.78s remaining: 30.7s
202: learn: 1797.7243252 total: 7.82s remaining: 30.7s
203: learn: 1797.0336469 total: 7.86s remaining: 30.7s
204: learn: 1796.3191776 total: 7.9s remaining: 30.6s
205: learn: 1795.9519571 total: 7.93s remaining: 30.6s
206: learn: 1795.5950900 total: 7.97s remaining: 30.5s
207: learn: 1795.2389059 total: 8.01s remaining: 30.5s
208: learn: 1794.7079839 total: 8.04s remaining: 30.4s
209: learn: 1794.1596165 total: 8.08s remaining: 30.4s
210: learn: 1793.7831297 total: 8.12s remaining: 30.3s
211: learn: 1793.4907585 total: 8.15s remaining: 30.3s
212: learn: 1792.9769478 total: 8.19s remaining: 30.2s
213: learn: 1792.5382337 total: 8.22s remaining: 30.2s
214: learn: 1791.9538646 total: 8.26s remaining: 30.2s
215: learn: 1791.2988125 total: 8.3s remaining: 30.1s
216: learn: 1790.8879168 total: 8.33s remaining: 30.1s
217: learn: 1790.5466705 total: 8.37s remaining: 30s
218: learn: 1790.1821375 total: 8.41s remaining: 30s
219: learn: 1789.8022776 total: 8.45s remaining: 29.9s
220: learn: 1789.3897690 total: 8.48s remaining: 29.9s
221: learn: 1789.2006412 total: 8.51s remaining: 29.8s
222: learn: 1788.6142665 total: 8.56s remaining: 29.8s
223: learn: 1788.1002454 total: 8.6s remaining: 29.8s
224: learn: 1787.6531289 total: 8.64s remaining: 29.8s
225: learn: 1787.2842224 total: 8.68s remaining: 29.7s
226: learn: 1786.9077368 total: 8.71s remaining: 29.6s
227: learn: 1786.4275520 total: 8.75s remaining: 29.6s
228: learn: 1786.1205733 total: 8.78s remaining: 29.6s
229: learn: 1785.6904303 total: 8.82s remaining: 29.5s
230: learn: 1785.3968018 total: 8.86s remaining: 29.5s
231: learn: 1784.9782433 total: 8.89s remaining: 29.4s
232: learn: 1784.6855910 total: 8.94s remaining: 29.4s
233: learn: 1784.2238292 total: 8.97s remaining: 29.4s
234: learn: 1783.9608709 total: 9s remaining: 29.3s
235: learn: 1783.6271962 total: 9.04s remaining: 29.3s
236: learn: 1783.2335930 total: 9.07s remaining: 29.2s
237: learn: 1782.7868410 total: 9.11s remaining: 29.2s
238: learn: 1782.5721117 total: 9.15s remaining: 29.1s
239: learn: 1781.9219510 total: 9.18s remaining: 29.1s
240: learn: 1781.7145898 total: 9.22s remaining: 29s
241: learn: 1781.3611394 total: 9.26s remaining: 29s
242: learn: 1781.1198496 total: 9.29s remaining: 28.9s
243: learn: 1780.6603243 total: 9.33s remaining: 28.9s
244: learn: 1780.2112602 total: 9.36s remaining: 28.9s
245: learn: 1779.9453147 total: 9.4s remaining: 28.8s
246: learn: 1779.5035305 total: 9.44s remaining: 28.8s
247: learn: 1779.1024113 total: 9.47s remaining: 28.7s
248: learn: 1778.6124969 total: 9.51s remaining: 28.7s
249: learn: 1778.2540646 total: 9.56s remaining: 28.7s
250: learn: 1777.8708548 total: 9.59s remaining: 28.6s
251: learn: 1777.6396625 total: 9.63s remaining: 28.6s
252: learn: 1777.3333206 total: 9.67s remaining: 28.5s
253: learn: 1776.9195690 total: 9.71s remaining: 28.5s
254: learn: 1776.6025572 total: 9.74s remaining: 28.5s
255: learn: 1776.1948877 total: 9.78s remaining: 28.4s
256: learn: 1775.9161063 total: 9.82s remaining: 28.4s
257: learn: 1775.6270258 total: 9.85s remaining: 28.3s
258: learn: 1775.3998128 total: 9.89s remaining: 28.3s
259: learn: 1775.0897997 total: 9.93s remaining: 28.3s
260: learn: 1774.8271029 total: 9.96s remaining: 28.2s
261: learn: 1774.3388322 total: 10s remaining: 28.2s
262: learn: 1774.0200502 total: 10s remaining: 28.1s
263: learn: 1773.6887452 total: 10.1s remaining: 28.1s
264: learn: 1773.4059839 total: 10.1s remaining: 28.1s
265: learn: 1773.1201130 total: 10.2s remaining: 28s
266: learn: 1772.7696711 total: 10.2s remaining: 28s
267: learn: 1772.4872386 total: 10.2s remaining: 27.9s
268: learn: 1772.2062464 total: 10.3s remaining: 27.9s
269: learn: 1771.8423772 total: 10.3s remaining: 27.9s
270: learn: 1771.5846551 total: 10.3s remaining: 27.8s
271: learn: 1771.4041686 total: 10.4s remaining: 27.8s
272: learn: 1770.8989639 total: 10.4s remaining: 27.7s
273: learn: 1770.1904435 total: 10.5s remaining: 27.7s
274: learn: 1769.7568932 total: 10.5s remaining: 27.6s
275: learn: 1769.3664708 total: 10.5s remaining: 27.6s
276: learn: 1769.0642151 total: 10.6s remaining: 27.6s
277: learn: 1768.6658957 total: 10.6s remaining: 27.5s
278: learn: 1768.1364497 total: 10.6s remaining: 27.5s
279: learn: 1767.9284926 total: 10.7s remaining: 27.5s
280: learn: 1767.6985789 total: 10.7s remaining: 27.4s
281: learn: 1767.1823263 total: 10.8s remaining: 27.4s
282: learn: 1766.8906104 total: 10.8s remaining: 27.4s
283: learn: 1766.6383109 total: 10.8s remaining: 27.3s
284: learn: 1766.1665040 total: 10.9s remaining: 27.3s
285: learn: 1765.8448374 total: 10.9s remaining: 27.3s
286: learn: 1765.5680723 total: 11s remaining: 27.3s
287: learn: 1765.3666445 total: 11s remaining: 27.2s
288: learn: 1765.1500794 total: 11.1s remaining: 27.2s
289: learn: 1764.8564873 total: 11.1s remaining: 27.2s
290: learn: 1764.5185652 total: 11.1s remaining: 27.1s
291: learn: 1764.1867872 total: 11.2s remaining: 27.1s
292: learn: 1763.8993393 total: 11.2s remaining: 27s
293: learn: 1763.6660679 total: 11.2s remaining: 27s
294: learn: 1763.3575871 total: 11.3s remaining: 26.9s
295: learn: 1763.1142639 total: 11.3s remaining: 26.9s
296: learn: 1762.6812398 total: 11.3s remaining: 26.8s
297: learn: 1762.2830127 total: 11.4s remaining: 26.8s
298: learn: 1762.0901304 total: 11.4s remaining: 26.7s
299: learn: 1761.7681685 total: 11.5s remaining: 26.7s
300: learn: 1761.4818991 total: 11.5s remaining: 26.7s
301: learn: 1761.1103422 total: 11.5s remaining: 26.7s
302: learn: 1760.8641990 total: 11.6s remaining: 26.6s
303: learn: 1760.6317205 total: 11.6s remaining: 26.6s
304: learn: 1760.3780051 total: 11.6s remaining: 26.5s
305: learn: 1760.0414518 total: 11.7s remaining: 26.5s
306: learn: 1759.8263695 total: 11.7s remaining: 26.4s
307: learn: 1759.5421926 total: 11.8s remaining: 26.4s
308: learn: 1759.2803304 total: 11.8s remaining: 26.4s
309: learn: 1758.7037405 total: 11.8s remaining: 26.3s
310: learn: 1758.4650643 total: 11.9s remaining: 26.3s
311: learn: 1758.0051509 total: 11.9s remaining: 26.2s
312: learn: 1757.8479266 total: 11.9s remaining: 26.2s
313: learn: 1757.5739874 total: 12s remaining: 26.1s
314: learn: 1757.3063596 total: 12s remaining: 26.1s
315: learn: 1757.0848107 total: 12s remaining: 26.1s
316: learn: 1756.7994567 total: 12.1s remaining: 26s
317: learn: 1756.5600904 total: 12.1s remaining: 26s
318: learn: 1756.2659534 total: 12.1s remaining: 25.9s
319: learn: 1756.0907102 total: 12.2s remaining: 25.9s
320: learn: 1755.8491010 total: 12.2s remaining: 25.8s
321: learn: 1755.5478877 total: 12.2s remaining: 25.8s
322: learn: 1755.1168360 total: 12.3s remaining: 25.7s
323: learn: 1754.8449535 total: 12.3s remaining: 25.7s
324: learn: 1754.5057935 total: 12.4s remaining: 25.7s
325: learn: 1754.0880522 total: 12.4s remaining: 25.6s
326: learn: 1753.8344479 total: 12.4s remaining: 25.6s
327: learn: 1753.6281704 total: 12.5s remaining: 25.5s
328: learn: 1753.2965795 total: 12.5s remaining: 25.5s
329: learn: 1752.9300382 total: 12.5s remaining: 25.4s
330: learn: 1752.5147734 total: 12.6s remaining: 25.4s
331: learn: 1752.1240970 total: 12.6s remaining: 25.4s
332: learn: 1751.9118084 total: 12.6s remaining: 25.3s
333: learn: 1751.5902142 total: 12.7s remaining: 25.3s
334: learn: 1751.3225292 total: 12.7s remaining: 25.2s
335: learn: 1750.9929799 total: 12.7s remaining: 25.2s
336: learn: 1750.7245450 total: 12.8s remaining: 25.1s
337: learn: 1750.3474505 total: 12.8s remaining: 25.1s
338: learn: 1750.1473267 total: 12.9s remaining: 25.1s
339: learn: 1749.9925988 total: 12.9s remaining: 25s
340: learn: 1749.7293843 total: 12.9s remaining: 25s
341: learn: 1749.5443800 total: 13s remaining: 24.9s
342: learn: 1749.2786608 total: 13s remaining: 24.9s
343: learn: 1749.0282543 total: 13s remaining: 24.9s
344: learn: 1748.8016758 total: 13.1s remaining: 24.8s
345: learn: 1748.5816151 total: 13.1s remaining: 24.8s
346: learn: 1748.2391353 total: 13.1s remaining: 24.7s
347: learn: 1747.9193570 total: 13.2s remaining: 24.7s
348: learn: 1747.5006882 total: 13.2s remaining: 24.6s
349: learn: 1747.2459727 total: 13.2s remaining: 24.6s
350: learn: 1746.9780406 total: 13.3s remaining: 24.6s
351: learn: 1746.6494659 total: 13.3s remaining: 24.5s
352: learn: 1746.4461148 total: 13.3s remaining: 24.5s
353: learn: 1746.2071127 total: 13.4s remaining: 24.4s
354: learn: 1745.9392687 total: 13.4s remaining: 24.4s
355: learn: 1745.5625000 total: 13.5s remaining: 24.4s
356: learn: 1745.2700794 total: 13.5s remaining: 24.3s
357: learn: 1744.8984304 total: 13.5s remaining: 24.3s
358: learn: 1744.6932283 total: 13.6s remaining: 24.3s
359: learn: 1744.5093506 total: 13.6s remaining: 24.2s
360: learn: 1744.2132385 total: 13.7s remaining: 24.2s
361: learn: 1743.7651854 total: 13.7s remaining: 24.1s
362: learn: 1743.2861394 total: 13.7s remaining: 24.1s
363: learn: 1743.0874491 total: 13.8s remaining: 24.1s
364: learn: 1742.8353213 total: 13.8s remaining: 24s
365: learn: 1742.6024486 total: 13.8s remaining: 24s
366: learn: 1742.3204285 total: 13.9s remaining: 23.9s
367: learn: 1742.1034864 total: 13.9s remaining: 23.9s
368: learn: 1741.6239581 total: 13.9s remaining: 23.8s
369: learn: 1741.3617940 total: 14s remaining: 23.8s
370: learn: 1741.0757835 total: 14s remaining: 23.8s
371: learn: 1740.7511262 total: 14.1s remaining: 23.7s
372: learn: 1740.4421277 total: 14.1s remaining: 23.7s
373: learn: 1740.1921007 total: 14.1s remaining: 23.7s
374: learn: 1739.7759459 total: 14.2s remaining: 23.6s
375: learn: 1739.5004514 total: 14.2s remaining: 23.6s
376: learn: 1739.2280361 total: 14.2s remaining: 23.5s
377: learn: 1739.0545965 total: 14.3s remaining: 23.5s
378: learn: 1738.8086327 total: 14.3s remaining: 23.4s
379: learn: 1738.6508553 total: 14.3s remaining: 23.4s
380: learn: 1738.3791908 total: 14.4s remaining: 23.4s
381: learn: 1738.1401524 total: 14.4s remaining: 23.3s
382: learn: 1737.8842934 total: 14.5s remaining: 23.3s
383: learn: 1737.6455247 total: 14.5s remaining: 23.3s
384: learn: 1737.4289805 total: 14.5s remaining: 23.2s
385: learn: 1737.1759950 total: 14.6s remaining: 23.2s
386: learn: 1736.9287996 total: 14.6s remaining: 23.1s
387: learn: 1736.6644316 total: 14.7s remaining: 23.1s
388: learn: 1736.4509275 total: 14.7s remaining: 23.1s
389: learn: 1736.1780686 total: 14.7s remaining: 23s
390: learn: 1735.8027451 total: 14.8s remaining: 23s
391: learn: 1735.5312872 total: 14.8s remaining: 23s
392: learn: 1735.2365895 total: 14.8s remaining: 22.9s
393: learn: 1735.0621982 total: 14.9s remaining: 22.9s
394: learn: 1734.7786646 total: 14.9s remaining: 22.8s
395: learn: 1734.5900719 total: 14.9s remaining: 22.8s
396: learn: 1734.4205195 total: 15s remaining: 22.8s
397: learn: 1734.1769668 total: 15s remaining: 22.7s
398: learn: 1734.0092385 total: 15s remaining: 22.7s
399: learn: 1733.6076731 total: 15.1s remaining: 22.6s
400: learn: 1733.4073943 total: 15.1s remaining: 22.6s
401: learn: 1733.1870464 total: 15.2s remaining: 22.5s
402: learn: 1732.8418426 total: 15.2s remaining: 22.5s
403: learn: 1732.5884280 total: 15.2s remaining: 22.5s
404: learn: 1732.4253999 total: 15.3s remaining: 22.4s
405: learn: 1732.2204470 total: 15.3s remaining: 22.4s
406: learn: 1732.0078576 total: 15.3s remaining: 22.3s
407: learn: 1731.6408685 total: 15.4s remaining: 22.3s
408: learn: 1731.4376410 total: 15.4s remaining: 22.3s
409: learn: 1731.0719856 total: 15.4s remaining: 22.2s
410: learn: 1730.9297863 total: 15.5s remaining: 22.2s
411: learn: 1730.5167411 total: 15.5s remaining: 22.2s
412: learn: 1730.2006985 total: 15.6s remaining: 22.1s
413: learn: 1729.9278694 total: 15.6s remaining: 22.1s
414: learn: 1729.6756361 total: 15.6s remaining: 22s
415: learn: 1729.4111341 total: 15.7s remaining: 22s
416: learn: 1729.2568988 total: 15.7s remaining: 22s
417: learn: 1729.0928255 total: 15.7s remaining: 21.9s
418: learn: 1728.8499582 total: 15.8s remaining: 21.9s
419: learn: 1728.5351801 total: 15.8s remaining: 21.9s
420: learn: 1728.2158585 total: 15.9s remaining: 21.8s
421: learn: 1728.0929619 total: 15.9s remaining: 21.8s
422: learn: 1727.9116979 total: 15.9s remaining: 21.7s
423: learn: 1727.6771975 total: 16s remaining: 21.7s
424: learn: 1727.4173729 total: 16s remaining: 21.7s
425: learn: 1727.0662389 total: 16s remaining: 21.6s
426: learn: 1726.8669824 total: 16.1s remaining: 21.6s
427: learn: 1726.6371360 total: 16.1s remaining: 21.5s
428: learn: 1726.3195048 total: 16.1s remaining: 21.5s
429: learn: 1726.0887469 total: 16.2s remaining: 21.5s
430: learn: 1725.8260628 total: 16.2s remaining: 21.4s
431: learn: 1725.5895624 total: 16.3s remaining: 21.4s
432: learn: 1725.2705483 total: 16.3s remaining: 21.4s
433: learn: 1725.1367573 total: 16.3s remaining: 21.3s
434: learn: 1725.0005454 total: 16.4s remaining: 21.3s
435: learn: 1724.8051876 total: 16.4s remaining: 21.2s
436: learn: 1724.6564043 total: 16.4s remaining: 21.2s
437: learn: 1724.5366264 total: 16.5s remaining: 21.1s
438: learn: 1724.2321711 total: 16.5s remaining: 21.1s
439: learn: 1724.0565394 total: 16.5s remaining: 21.1s
440: learn: 1723.8850055 total: 16.6s remaining: 21s
441: learn: 1723.6696154 total: 16.6s remaining: 21s
442: learn: 1723.3431246 total: 16.7s remaining: 20.9s
443: learn: 1723.1398505 total: 16.7s remaining: 20.9s
444: learn: 1722.8639785 total: 16.7s remaining: 20.9s
445: learn: 1722.6735897 total: 16.8s remaining: 20.8s
446: learn: 1722.5845354 total: 16.8s remaining: 20.8s
447: learn: 1722.4097049 total: 16.8s remaining: 20.7s
448: learn: 1722.1139844 total: 16.9s remaining: 20.7s
449: learn: 1721.7760568 total: 16.9s remaining: 20.7s
450: learn: 1721.4713080 total: 17s remaining: 20.6s
451: learn: 1721.2194677 total: 17s remaining: 20.6s
452: learn: 1721.0612090 total: 17s remaining: 20.6s
453: learn: 1720.9146539 total: 17.1s remaining: 20.5s
454: learn: 1720.8222587 total: 17.1s remaining: 20.5s
455: learn: 1720.6646628 total: 17.1s remaining: 20.5s
456: learn: 1720.4637749 total: 17.2s remaining: 20.4s
457: learn: 1720.2393639 total: 17.2s remaining: 20.4s
458: learn: 1720.1202312 total: 17.3s remaining: 20.3s
459: learn: 1719.7680282 total: 17.3s remaining: 20.3s
460: learn: 1719.5163737 total: 17.3s remaining: 20.3s
461: learn: 1719.3732885 total: 17.4s remaining: 20.2s
462: learn: 1719.2246511 total: 17.4s remaining: 20.2s
463: learn: 1719.1061951 total: 17.4s remaining: 20.1s
464: learn: 1718.8771668 total: 17.5s remaining: 20.1s
465: learn: 1718.6532539 total: 17.5s remaining: 20.1s
466: learn: 1718.4049513 total: 17.5s remaining: 20s
467: learn: 1718.2375973 total: 17.6s remaining: 20s
468: learn: 1717.9303183 total: 17.6s remaining: 19.9s
469: learn: 1717.7103214 total: 17.7s remaining: 19.9s
470: learn: 1717.4267298 total: 17.7s remaining: 19.9s
471: learn: 1717.1456832 total: 17.7s remaining: 19.8s
472: learn: 1716.9588359 total: 17.8s remaining: 19.8s
473: learn: 1716.8348814 total: 17.8s remaining: 19.8s
474: learn: 1716.5559279 total: 17.8s remaining: 19.7s
475: learn: 1716.3504419 total: 17.9s remaining: 19.7s
476: learn: 1716.2040290 total: 17.9s remaining: 19.6s
477: learn: 1716.0826465 total: 17.9s remaining: 19.6s
478: learn: 1715.9015271 total: 18s remaining: 19.6s
479: learn: 1715.7024150 total: 18s remaining: 19.5s
480: learn: 1715.6024799 total: 18s remaining: 19.5s
481: learn: 1715.3289656 total: 18.1s remaining: 19.4s
482: learn: 1715.2076024 total: 18.1s remaining: 19.4s
483: learn: 1714.9178652 total: 18.2s remaining: 19.4s
484: learn: 1714.7177816 total: 18.2s remaining: 19.3s
485: learn: 1714.4598430 total: 18.2s remaining: 19.3s
486: learn: 1714.0183643 total: 18.3s remaining: 19.2s
487: learn: 1713.7304333 total: 18.3s remaining: 19.2s
488: learn: 1713.5103897 total: 18.3s remaining: 19.2s
489: learn: 1713.3742397 total: 18.4s remaining: 19.1s
490: learn: 1713.2619764 total: 18.4s remaining: 19.1s
491: learn: 1713.0387966 total: 18.4s remaining: 19s
492: learn: 1712.9401211 total: 18.5s remaining: 19s
493: learn: 1712.7394449 total: 18.5s remaining: 19s
494: learn: 1712.5343663 total: 18.5s remaining: 18.9s
495: learn: 1712.3784743 total: 18.6s remaining: 18.9s
496: learn: 1712.0922978 total: 18.6s remaining: 18.9s
497: learn: 1711.8156402 total: 18.7s remaining: 18.8s
498: learn: 1711.6820771 total: 18.7s remaining: 18.8s
499: learn: 1711.4950015 total: 18.7s remaining: 18.7s
500: learn: 1711.2591853 total: 18.8s remaining: 18.7s
501: learn: 1711.0977516 total: 18.8s remaining: 18.7s
502: learn: 1710.9929387 total: 18.9s remaining: 18.6s
503: learn: 1710.8271099 total: 18.9s remaining: 18.6s
504: learn: 1710.6331287 total: 18.9s remaining: 18.6s
505: learn: 1710.4762621 total: 19s remaining: 18.5s
506: learn: 1710.3142589 total: 19s remaining: 18.5s
507: learn: 1710.1899185 total: 19s remaining: 18.4s
508: learn: 1709.9372884 total: 19.1s remaining: 18.4s
509: learn: 1709.7034273 total: 19.1s remaining: 18.4s
510: learn: 1709.5120325 total: 19.2s remaining: 18.3s
511: learn: 1709.2075357 total: 19.2s remaining: 18.3s
512: learn: 1709.0654959 total: 19.2s remaining: 18.3s
513: learn: 1708.8787820 total: 19.3s remaining: 18.2s
514: learn: 1708.6184315 total: 19.3s remaining: 18.2s
515: learn: 1708.5472845 total: 19.3s remaining: 18.1s
516: learn: 1708.4376861 total: 19.4s remaining: 18.1s
517: learn: 1708.2355679 total: 19.4s remaining: 18.1s
518: learn: 1707.9584908 total: 19.4s remaining: 18s
519: learn: 1707.6131821 total: 19.5s remaining: 18s
520: learn: 1707.3502514 total: 19.5s remaining: 17.9s
521: learn: 1707.1687955 total: 19.6s remaining: 17.9s
522: learn: 1706.8852222 total: 19.6s remaining: 17.9s
523: learn: 1706.7647810 total: 19.6s remaining: 17.8s
524: learn: 1706.6047831 total: 19.7s remaining: 17.8s
525: learn: 1706.4204895 total: 19.7s remaining: 17.8s
526: learn: 1706.2095678 total: 19.7s remaining: 17.7s
527: learn: 1706.0232433 total: 19.8s remaining: 17.7s
528: learn: 1705.7865371 total: 19.8s remaining: 17.6s
529: learn: 1705.6659996 total: 19.8s remaining: 17.6s
530: learn: 1705.5108255 total: 19.9s remaining: 17.6s
531: learn: 1705.2820013 total: 19.9s remaining: 17.5s
532: learn: 1705.0822526 total: 20s remaining: 17.5s
533: learn: 1704.9111084 total: 20s remaining: 17.5s
534: learn: 1704.7166620 total: 20s remaining: 17.4s
535: learn: 1704.5360805 total: 20.1s remaining: 17.4s
536: learn: 1704.3616382 total: 20.1s remaining: 17.3s
537: learn: 1704.2146442 total: 20.1s remaining: 17.3s
538: learn: 1704.0714488 total: 20.2s remaining: 17.3s
539: learn: 1703.8316317 total: 20.2s remaining: 17.2s
540: learn: 1703.5975953 total: 20.3s remaining: 17.2s
541: learn: 1703.4061100 total: 20.3s remaining: 17.2s
542: learn: 1703.2313359 total: 20.3s remaining: 17.1s
543: learn: 1703.0239437 total: 20.4s remaining: 17.1s
544: learn: 1702.8668595 total: 20.4s remaining: 17s
545: learn: 1702.7368019 total: 20.4s remaining: 17s
546: learn: 1702.5079268 total: 20.5s remaining: 17s
547: learn: 1702.4216445 total: 20.5s remaining: 16.9s
548: learn: 1702.2927510 total: 20.5s remaining: 16.9s
549: learn: 1702.0422832 total: 20.6s remaining: 16.8s
550: learn: 1701.8703780 total: 20.6s remaining: 16.8s
551: learn: 1701.7375122 total: 20.6s remaining: 16.8s
552: learn: 1701.6181835 total: 20.7s remaining: 16.7s
553: learn: 1701.5040375 total: 20.7s remaining: 16.7s
554: learn: 1701.3217843 total: 20.8s remaining: 16.7s
555: learn: 1701.1424688 total: 20.8s remaining: 16.6s
556: learn: 1700.8518772 total: 20.8s remaining: 16.6s
557: learn: 1700.6148405 total: 20.9s remaining: 16.6s
558: learn: 1700.4257132 total: 20.9s remaining: 16.5s
559: learn: 1700.3250255 total: 21s remaining: 16.5s
560: learn: 1700.1770679 total: 21s remaining: 16.4s
561: learn: 1700.0776019 total: 21.1s remaining: 16.4s
562: learn: 1699.9274944 total: 21.1s remaining: 16.4s
563: learn: 1699.7862868 total: 21.1s remaining: 16.3s
564: learn: 1699.5850276 total: 21.2s remaining: 16.3s
565: learn: 1699.3798315 total: 21.2s remaining: 16.3s
566: learn: 1699.2410570 total: 21.2s remaining: 16.2s
567: learn: 1699.0771009 total: 21.3s remaining: 16.2s
568: learn: 1698.9200611 total: 21.3s remaining: 16.1s
569: learn: 1698.8371874 total: 21.3s remaining: 16.1s
570: learn: 1698.6693974 total: 21.4s remaining: 16.1s
571: learn: 1698.4458230 total: 21.4s remaining: 16s
572: learn: 1698.2352671 total: 21.5s remaining: 16s
573: learn: 1698.0114403 total: 21.5s remaining: 16s
574: learn: 1697.9620283 total: 21.5s remaining: 15.9s
575: learn: 1697.7285149 total: 21.6s remaining: 15.9s
576: learn: 1697.5572914 total: 21.6s remaining: 15.8s
577: learn: 1697.2472830 total: 21.6s remaining: 15.8s
578: learn: 1697.0865106 total: 21.7s remaining: 15.8s
579: learn: 1696.8986570 total: 21.7s remaining: 15.7s
580: learn: 1696.6495019 total: 21.7s remaining: 15.7s
581: learn: 1696.5006199 total: 21.8s remaining: 15.6s
582: learn: 1696.3224090 total: 21.8s remaining: 15.6s
583: learn: 1696.1328786 total: 21.8s remaining: 15.6s
584: learn: 1695.9305801 total: 21.9s remaining: 15.5s
585: learn: 1695.7786486 total: 21.9s remaining: 15.5s
586: learn: 1695.6893543 total: 21.9s remaining: 15.4s
587: learn: 1695.6262466 total: 22s remaining: 15.4s
588: learn: 1695.4207369 total: 22s remaining: 15.4s
589: learn: 1695.3013015 total: 22.1s remaining: 15.3s
590: learn: 1695.1384591 total: 22.1s remaining: 15.3s
591: learn: 1694.9932710 total: 22.1s remaining: 15.2s
592: learn: 1694.7981887 total: 22.2s remaining: 15.2s
593: learn: 1694.6564635 total: 22.2s remaining: 15.2s
594: learn: 1694.2926821 total: 22.2s remaining: 15.1s
595: learn: 1694.1911682 total: 22.3s remaining: 15.1s
596: learn: 1694.0801305 total: 22.3s remaining: 15s
597: learn: 1693.9037712 total: 22.3s remaining: 15s
598: learn: 1693.6964583 total: 22.4s remaining: 15s
599: learn: 1693.5709800 total: 22.4s remaining: 14.9s
600: learn: 1693.4147224 total: 22.4s remaining: 14.9s
601: learn: 1693.2299947 total: 22.5s remaining: 14.9s
602: learn: 1693.0585101 total: 22.5s remaining: 14.8s
603: learn: 1692.8997478 total: 22.6s remaining: 14.8s
604: learn: 1692.7430051 total: 22.6s remaining: 14.8s
605: learn: 1692.6348260 total: 22.6s remaining: 14.7s
606: learn: 1692.4622758 total: 22.7s remaining: 14.7s
607: learn: 1692.3065340 total: 22.7s remaining: 14.6s
608: learn: 1692.1929430 total: 22.7s remaining: 14.6s
609: learn: 1691.9846774 total: 22.8s remaining: 14.6s
610: learn: 1691.8124788 total: 22.8s remaining: 14.5s
611: learn: 1691.4861328 total: 22.9s remaining: 14.5s
612: learn: 1691.3641961 total: 22.9s remaining: 14.5s
613: learn: 1691.2283038 total: 22.9s remaining: 14.4s
614: learn: 1691.1405414 total: 23s remaining: 14.4s
615: learn: 1690.8798935 total: 23s remaining: 14.3s
616: learn: 1690.7862335 total: 23s remaining: 14.3s
617: learn: 1690.6369271 total: 23.1s remaining: 14.3s
618: learn: 1690.4939458 total: 23.1s remaining: 14.2s
619: learn: 1690.4174686 total: 23.1s remaining: 14.2s
620: learn: 1690.2908262 total: 23.2s remaining: 14.1s
621: learn: 1690.0350903 total: 23.2s remaining: 14.1s
622: learn: 1689.9688565 total: 23.3s remaining: 14.1s
623: learn: 1689.7280056 total: 23.3s remaining: 14s
624: learn: 1689.5527882 total: 23.3s remaining: 14s
625: learn: 1689.3676756 total: 23.4s remaining: 14s
626: learn: 1689.1537142 total: 23.4s remaining: 13.9s
627: learn: 1688.9982296 total: 23.4s remaining: 13.9s
628: learn: 1688.7045118 total: 23.5s remaining: 13.8s
629: learn: 1688.5835104 total: 23.5s remaining: 13.8s
630: learn: 1688.4210762 total: 23.6s remaining: 13.8s
631: learn: 1688.3263688 total: 23.6s remaining: 13.7s
632: learn: 1688.2075667 total: 23.6s remaining: 13.7s
633: learn: 1687.9733608 total: 23.7s remaining: 13.7s
634: learn: 1687.8498311 total: 23.7s remaining: 13.6s
635: learn: 1687.6652688 total: 23.7s remaining: 13.6s
636: learn: 1687.4933491 total: 23.8s remaining: 13.5s
637: learn: 1687.3639066 total: 23.8s remaining: 13.5s
638: learn: 1687.2164424 total: 23.8s remaining: 13.5s
639: learn: 1687.1215159 total: 23.9s remaining: 13.4s
640: learn: 1686.9672682 total: 23.9s remaining: 13.4s
641: learn: 1686.7835279 total: 23.9s remaining: 13.3s
642: learn: 1686.6344900 total: 24s remaining: 13.3s
643: learn: 1686.4368296 total: 24s remaining: 13.3s
644: learn: 1686.1283055 total: 24s remaining: 13.2s
645: learn: 1686.0319744 total: 24.1s remaining: 13.2s
646: learn: 1685.8784097 total: 24.1s remaining: 13.2s
647: learn: 1685.7247837 total: 24.1s remaining: 13.1s
648: learn: 1685.6297880 total: 24.2s remaining: 13.1s
649: learn: 1685.4069375 total: 24.2s remaining: 13s
650: learn: 1685.2322691 total: 24.2s remaining: 13s
651: learn: 1685.0892882 total: 24.3s remaining: 13s
652: learn: 1684.9853738 total: 24.3s remaining: 12.9s
653: learn: 1684.8911601 total: 24.4s remaining: 12.9s
654: learn: 1684.7264021 total: 24.4s remaining: 12.8s
655: learn: 1684.6448773 total: 24.4s remaining: 12.8s
656: learn: 1684.4500992 total: 24.5s remaining: 12.8s
657: learn: 1684.2712591 total: 24.5s remaining: 12.7s
658: learn: 1684.0837157 total: 24.5s remaining: 12.7s
659: learn: 1683.9473053 total: 24.6s remaining: 12.7s
660: learn: 1683.8144984 total: 24.6s remaining: 12.6s
661: learn: 1683.7403280 total: 24.6s remaining: 12.6s
662: learn: 1683.5161112 total: 24.7s remaining: 12.5s
663: learn: 1683.3907945 total: 24.7s remaining: 12.5s
664: learn: 1683.2898509 total: 24.8s remaining: 12.5s
665: learn: 1683.0970672 total: 24.8s remaining: 12.4s
666: learn: 1683.0061456 total: 24.8s remaining: 12.4s
667: learn: 1682.9051575 total: 24.9s remaining: 12.4s
668: learn: 1682.7057448 total: 24.9s remaining: 12.3s
669: learn: 1682.5544938 total: 24.9s remaining: 12.3s
670: learn: 1682.3945318 total: 25s remaining: 12.2s
671: learn: 1682.2167941 total: 25s remaining: 12.2s
672: learn: 1682.0770457 total: 25s remaining: 12.2s
673: learn: 1681.8354251 total: 25.1s remaining: 12.1s
674: learn: 1681.6784281 total: 25.1s remaining: 12.1s
675: learn: 1681.4974934 total: 25.1s remaining: 12s
676: learn: 1681.3850834 total: 25.2s remaining: 12s
677: learn: 1681.2517942 total: 25.2s remaining: 12s
678: learn: 1681.1611254 total: 25.2s remaining: 11.9s
679: learn: 1681.0016668 total: 25.3s remaining: 11.9s
680: learn: 1680.8935747 total: 25.3s remaining: 11.9s
681: learn: 1680.8247735 total: 25.3s remaining: 11.8s
682: learn: 1680.7218487 total: 25.4s remaining: 11.8s
683: learn: 1680.5864594 total: 25.4s remaining: 11.7s
684: learn: 1680.4605058 total: 25.5s remaining: 11.7s
685: learn: 1680.2376068 total: 25.5s remaining: 11.7s
686: learn: 1680.1758320 total: 25.5s remaining: 11.6s
687: learn: 1680.0241639 total: 25.6s remaining: 11.6s
688: learn: 1679.8791839 total: 25.6s remaining: 11.5s
689: learn: 1679.7162481 total: 25.6s remaining: 11.5s
690: learn: 1679.5416180 total: 25.7s remaining: 11.5s
691: learn: 1679.4170630 total: 25.7s remaining: 11.4s
692: learn: 1679.2436408 total: 25.7s remaining: 11.4s
693: learn: 1679.1117381 total: 25.8s remaining: 11.4s
694: learn: 1678.9576004 total: 25.8s remaining: 11.3s
695: learn: 1678.8058421 total: 25.8s remaining: 11.3s
696: learn: 1678.6894377 total: 25.9s remaining: 11.3s
697: learn: 1678.5200190 total: 25.9s remaining: 11.2s
698: learn: 1678.3965343 total: 26s remaining: 11.2s
699: learn: 1678.2687540 total: 26s remaining: 11.1s
700: learn: 1678.0802346 total: 26s remaining: 11.1s
701: learn: 1677.8958989 total: 26.1s remaining: 11.1s
702: learn: 1677.7963547 total: 26.1s remaining: 11s
703: learn: 1677.6392694 total: 26.1s remaining: 11s
704: learn: 1677.4352800 total: 26.2s remaining: 10.9s
705: learn: 1677.3125238 total: 26.2s remaining: 10.9s
706: learn: 1677.1476560 total: 26.2s remaining: 10.9s
707: learn: 1677.0367564 total: 26.3s remaining: 10.8s
708: learn: 1676.9361584 total: 26.3s remaining: 10.8s
709: learn: 1676.8059478 total: 26.4s remaining: 10.8s
710: learn: 1676.7154256 total: 26.4s remaining: 10.7s
711: learn: 1676.6077365 total: 26.4s remaining: 10.7s
712: learn: 1676.4350408 total: 26.5s remaining: 10.7s
713: learn: 1676.3364161 total: 26.5s remaining: 10.6s
714: learn: 1676.1101897 total: 26.5s remaining: 10.6s
715: learn: 1675.9471705 total: 26.6s remaining: 10.5s
716: learn: 1675.7844364 total: 26.6s remaining: 10.5s
717: learn: 1675.6109474 total: 26.7s remaining: 10.5s
718: learn: 1675.4847957 total: 26.7s remaining: 10.4s
719: learn: 1675.3977002 total: 26.7s remaining: 10.4s
720: learn: 1675.3084707 total: 26.8s remaining: 10.4s
721: learn: 1675.1707373 total: 26.8s remaining: 10.3s
722: learn: 1675.1093974 total: 26.8s remaining: 10.3s
723: learn: 1674.8997906 total: 26.9s remaining: 10.2s
724: learn: 1674.8447168 total: 26.9s remaining: 10.2s
725: learn: 1674.7399367 total: 26.9s remaining: 10.2s
726: learn: 1674.6348980 total: 27s remaining: 10.1s
727: learn: 1674.5470940 total: 27s remaining: 10.1s
728: learn: 1674.4660068 total: 27.1s remaining: 10.1s
729: learn: 1674.3420098 total: 27.1s remaining: 10s
730: learn: 1674.2147016 total: 27.1s remaining: 9.99s
731: learn: 1674.1328517 total: 27.2s remaining: 9.95s
732: learn: 1673.9818478 total: 27.2s remaining: 9.91s
733: learn: 1673.8285175 total: 27.3s remaining: 9.88s
734: learn: 1673.6368248 total: 27.3s remaining: 9.84s
735: learn: 1673.4523845 total: 27.3s remaining: 9.81s
736: learn: 1673.3858658 total: 27.4s remaining: 9.77s
737: learn: 1673.1952204 total: 27.4s remaining: 9.73s
738: learn: 1672.9860140 total: 27.5s remaining: 9.7s
739: learn: 1672.8757114 total: 27.5s remaining: 9.66s
740: learn: 1672.6993988 total: 27.5s remaining: 9.62s
741: learn: 1672.6454698 total: 27.6s remaining: 9.59s
742: learn: 1672.5069602 total: 27.6s remaining: 9.55s
743: learn: 1672.4251156 total: 27.6s remaining: 9.51s
744: learn: 1672.3218743 total: 27.7s remaining: 9.47s
745: learn: 1672.2356822 total: 27.7s remaining: 9.44s
746: learn: 1672.0915272 total: 27.8s remaining: 9.4s
747: learn: 1671.8967974 total: 27.8s remaining: 9.36s
748: learn: 1671.8407001 total: 27.8s remaining: 9.32s
749: learn: 1671.7207630 total: 27.9s remaining: 9.29s
750: learn: 1671.4845382 total: 27.9s remaining: 9.25s
751: learn: 1671.3925004 total: 27.9s remaining: 9.21s
752: learn: 1671.2904745 total: 28s remaining: 9.18s
753: learn: 1671.1817530 total: 28s remaining: 9.14s
754: learn: 1671.0265159 total: 28s remaining: 9.1s
755: learn: 1670.9156212 total: 28.1s remaining: 9.06s
756: learn: 1670.8636604 total: 28.1s remaining: 9.03s
757: learn: 1670.7288488 total: 28.2s remaining: 8.99s
758: learn: 1670.5928166 total: 28.2s remaining: 8.95s
759: learn: 1670.4388169 total: 28.2s remaining: 8.91s
760: learn: 1670.2313387 total: 28.3s remaining: 8.88s
761: learn: 1670.1281205 total: 28.3s remaining: 8.84s
762: learn: 1670.0122737 total: 28.3s remaining: 8.8s
763: learn: 1669.9326477 total: 28.4s remaining: 8.77s
764: learn: 1669.7738884 total: 28.4s remaining: 8.73s
765: learn: 1669.5812741 total: 28.5s remaining: 8.69s
766: learn: 1669.4864356 total: 28.5s remaining: 8.65s
767: learn: 1669.4404012 total: 28.5s remaining: 8.62s
768: learn: 1669.2543329 total: 28.6s remaining: 8.58s
769: learn: 1669.0674034 total: 28.6s remaining: 8.54s
770: learn: 1668.9608453 total: 28.6s remaining: 8.5s
771: learn: 1668.8669561 total: 28.7s remaining: 8.47s
772: learn: 1668.7490347 total: 28.7s remaining: 8.43s
773: learn: 1668.6607003 total: 28.7s remaining: 8.39s
774: learn: 1668.5564180 total: 28.8s remaining: 8.35s
775: learn: 1668.4903669 total: 28.8s remaining: 8.31s
776: learn: 1668.4272804 total: 28.8s remaining: 8.28s
777: learn: 1668.3239406 total: 28.9s remaining: 8.24s
778: learn: 1668.2659643 total: 28.9s remaining: 8.2s
779: learn: 1668.1750383 total: 29s remaining: 8.17s
780: learn: 1668.0925076 total: 29s remaining: 8.13s
781: learn: 1668.0232905 total: 29s remaining: 8.09s
782: learn: 1667.8234460 total: 29.1s remaining: 8.05s
783: learn: 1667.5820075 total: 29.1s remaining: 8.02s
784: learn: 1667.4734628 total: 29.1s remaining: 7.98s
785: learn: 1667.3592407 total: 29.2s remaining: 7.94s
786: learn: 1667.2361999 total: 29.2s remaining: 7.9s
787: learn: 1667.1536925 total: 29.2s remaining: 7.87s
788: learn: 1667.0105916 total: 29.3s remaining: 7.83s
789: learn: 1666.9582421 total: 29.3s remaining: 7.79s
790: learn: 1666.8017005 total: 29.4s remaining: 7.75s
791: learn: 1666.6900655 total: 29.4s remaining: 7.72s
792: learn: 1666.5414016 total: 29.4s remaining: 7.68s
793: learn: 1666.4293517 total: 29.5s remaining: 7.64s
794: learn: 1666.2746960 total: 29.5s remaining: 7.6s
795: learn: 1666.1624518 total: 29.5s remaining: 7.57s
796: learn: 1666.0229459 total: 29.6s remaining: 7.53s
797: learn: 1665.9226514 total: 29.6s remaining: 7.49s
798: learn: 1665.8103572 total: 29.6s remaining: 7.45s
799: learn: 1665.7351465 total: 29.7s remaining: 7.42s
800: learn: 1665.6280624 total: 29.7s remaining: 7.38s
801: learn: 1665.4438989 total: 29.7s remaining: 7.34s
802: learn: 1665.3764375 total: 29.8s remaining: 7.3s
803: learn: 1665.2819024 total: 29.8s remaining: 7.27s
804: learn: 1665.1838539 total: 29.8s remaining: 7.23s
805: learn: 1665.0629147 total: 29.9s remaining: 7.19s
806: learn: 1664.9524694 total: 29.9s remaining: 7.15s
807: learn: 1664.9092102 total: 29.9s remaining: 7.12s
808: learn: 1664.8031237 total: 30s remaining: 7.08s
809: learn: 1664.7098368 total: 30s remaining: 7.04s
810: learn: 1664.6523562 total: 30.1s remaining: 7.01s
811: learn: 1664.5839101 total: 30.1s remaining: 6.97s
812: learn: 1664.4589302 total: 30.1s remaining: 6.93s
813: learn: 1664.3875261 total: 30.2s remaining: 6.9s
814: learn: 1664.3105962 total: 30.2s remaining: 6.86s
815: learn: 1664.2588160 total: 30.3s remaining: 6.83s
816: learn: 1664.0818948 total: 30.3s remaining: 6.79s
817: learn: 1663.9482962 total: 30.4s remaining: 6.75s
818: learn: 1663.7970567 total: 30.4s remaining: 6.72s
819: learn: 1663.6541816 total: 30.4s remaining: 6.68s
820: learn: 1663.4795958 total: 30.5s remaining: 6.65s
821: learn: 1663.2679883 total: 30.5s remaining: 6.61s
822: learn: 1663.1442857 total: 30.6s remaining: 6.57s
823: learn: 1663.0255818 total: 30.6s remaining: 6.54s
824: learn: 1662.9347651 total: 30.6s remaining: 6.5s
825: learn: 1662.7862990 total: 30.7s remaining: 6.46s
826: learn: 1662.7249768 total: 30.7s remaining: 6.42s
827: learn: 1662.6156137 total: 30.7s remaining: 6.38s
828: learn: 1662.5073758 total: 30.8s remaining: 6.35s
829: learn: 1662.4122239 total: 30.8s remaining: 6.31s
830: learn: 1662.3202180 total: 30.8s remaining: 6.27s
831: learn: 1662.1821761 total: 30.9s remaining: 6.24s
832: learn: 1662.0872805 total: 30.9s remaining: 6.2s
833: learn: 1661.9780387 total: 31s remaining: 6.17s
834: learn: 1661.8551608 total: 31s remaining: 6.13s
835: learn: 1661.7299061 total: 31.1s remaining: 6.09s
836: learn: 1661.6226776 total: 31.1s remaining: 6.05s
837: learn: 1661.5175607 total: 31.1s remaining: 6.02s
838: learn: 1661.4005224 total: 31.2s remaining: 5.98s
839: learn: 1661.2881224 total: 31.2s remaining: 5.94s
840: learn: 1661.1634719 total: 31.2s remaining: 5.9s
841: learn: 1661.0212829 total: 31.3s remaining: 5.87s
842: learn: 1660.9705221 total: 31.3s remaining: 5.83s
843: learn: 1660.8269297 total: 31.3s remaining: 5.79s
844: learn: 1660.7710185 total: 31.4s remaining: 5.75s
845: learn: 1660.7101926 total: 31.4s remaining: 5.72s
846: learn: 1660.6050936 total: 31.5s remaining: 5.68s
847: learn: 1660.4695481 total: 31.5s remaining: 5.64s
848: learn: 1660.3535390 total: 31.5s remaining: 5.61s
849: learn: 1660.2096117 total: 31.6s remaining: 5.57s
850: learn: 1660.0370291 total: 31.6s remaining: 5.53s
851: learn: 1659.8604050 total: 31.6s remaining: 5.49s
852: learn: 1659.7291276 total: 31.7s remaining: 5.46s
853: learn: 1659.6404716 total: 31.7s remaining: 5.42s
854: learn: 1659.5241863 total: 31.7s remaining: 5.38s
855: learn: 1659.4011182 total: 31.8s remaining: 5.34s
856: learn: 1659.3228199 total: 31.8s remaining: 5.3s
857: learn: 1659.2441871 total: 31.8s remaining: 5.27s
858: learn: 1659.1544882 total: 31.9s remaining: 5.23s
859: learn: 1659.0466642 total: 31.9s remaining: 5.19s
860: learn: 1658.9797395 total: 31.9s remaining: 5.16s
861: learn: 1658.8539859 total: 32s remaining: 5.12s
862: learn: 1658.7501992 total: 32s remaining: 5.08s
863: learn: 1658.6791128 total: 32.1s remaining: 5.04s
864: learn: 1658.6117976 total: 32.1s remaining: 5.01s
865: learn: 1658.5427267 total: 32.1s remaining: 4.97s
866: learn: 1658.3896135 total: 32.2s remaining: 4.93s
867: learn: 1658.2685957 total: 32.2s remaining: 4.89s
868: learn: 1658.1483773 total: 32.2s remaining: 4.86s
869: learn: 1658.1136286 total: 32.3s remaining: 4.82s
870: learn: 1657.9893127 total: 32.3s remaining: 4.78s
871: learn: 1657.9530228 total: 32.3s remaining: 4.75s
872: learn: 1657.8841781 total: 32.4s remaining: 4.71s
873: learn: 1657.8441870 total: 32.4s remaining: 4.67s
874: learn: 1657.7298265 total: 32.4s remaining: 4.63s
875: learn: 1657.5645105 total: 32.5s remaining: 4.6s
876: learn: 1657.4149168 total: 32.5s remaining: 4.56s
877: learn: 1657.2922775 total: 32.5s remaining: 4.52s
878: learn: 1657.2065193 total: 32.6s remaining: 4.48s
879: learn: 1657.0564731 total: 32.6s remaining: 4.45s
880: learn: 1656.9803490 total: 32.7s remaining: 4.41s
881: learn: 1656.8775548 total: 32.7s remaining: 4.37s
882: learn: 1656.7923397 total: 32.7s remaining: 4.34s
883: learn: 1656.6830786 total: 32.8s remaining: 4.3s
884: learn: 1656.5719416 total: 32.8s remaining: 4.26s
885: learn: 1656.4009333 total: 32.8s remaining: 4.22s
886: learn: 1656.2932785 total: 32.9s remaining: 4.19s
887: learn: 1656.1893944 total: 32.9s remaining: 4.15s
888: learn: 1656.0869241 total: 33s remaining: 4.11s
889: learn: 1655.9653013 total: 33s remaining: 4.08s
890: learn: 1655.8005605 total: 33s remaining: 4.04s
891: learn: 1655.7291182 total: 33.1s remaining: 4s
892: learn: 1655.6244260 total: 33.1s remaining: 3.96s
893: learn: 1655.5210290 total: 33.1s remaining: 3.93s
894: learn: 1655.4644645 total: 33.2s remaining: 3.89s
895: learn: 1655.4008028 total: 33.2s remaining: 3.85s
896: learn: 1655.3411920 total: 33.2s remaining: 3.81s
897: learn: 1655.2021571 total: 33.3s remaining: 3.78s
898: learn: 1655.1483780 total: 33.3s remaining: 3.74s
899: learn: 1655.0558898 total: 33.3s remaining: 3.7s
900: learn: 1655.0051558 total: 33.4s remaining: 3.67s
901: learn: 1654.9429659 total: 33.4s remaining: 3.63s
902: learn: 1654.8447666 total: 33.4s remaining: 3.59s
903: learn: 1654.6648911 total: 33.5s remaining: 3.55s
904: learn: 1654.5540094 total: 33.5s remaining: 3.52s
905: learn: 1654.4748853 total: 33.5s remaining: 3.48s
906: learn: 1654.3005618 total: 33.6s remaining: 3.44s
907: learn: 1654.2435769 total: 33.6s remaining: 3.41s
908: learn: 1654.1453072 total: 33.7s remaining: 3.37s
909: learn: 1654.0064250 total: 33.7s remaining: 3.33s
910: learn: 1653.9616946 total: 33.7s remaining: 3.29s
911: learn: 1653.7641910 total: 33.8s remaining: 3.26s
912: learn: 1653.6989258 total: 33.8s remaining: 3.22s
913: learn: 1653.6453149 total: 33.9s remaining: 3.19s
914: learn: 1653.5486930 total: 33.9s remaining: 3.15s
915: learn: 1653.4114197 total: 33.9s remaining: 3.11s
916: learn: 1653.3095058 total: 34s remaining: 3.07s
917: learn: 1653.1816451 total: 34s remaining: 3.04s
918: learn: 1653.0882668 total: 34s remaining: 3s
919: learn: 1652.9353790 total: 34.1s remaining: 2.96s
920: learn: 1652.7593966 total: 34.1s remaining: 2.93s
921: learn: 1652.6690695 total: 34.2s remaining: 2.89s
922: learn: 1652.6176983 total: 34.2s remaining: 2.85s
923: learn: 1652.5320858 total: 34.2s remaining: 2.81s
924: learn: 1652.4458549 total: 34.3s remaining: 2.78s
925: learn: 1652.3911495 total: 34.3s remaining: 2.74s
926: learn: 1652.2986861 total: 34.3s remaining: 2.7s
927: learn: 1652.1576076 total: 34.4s remaining: 2.67s
928: learn: 1652.0645619 total: 34.4s remaining: 2.63s
929: learn: 1651.9870058 total: 34.4s remaining: 2.59s
930: learn: 1651.9224912 total: 34.5s remaining: 2.56s
931: learn: 1651.8234396 total: 34.5s remaining: 2.52s
932: learn: 1651.7612482 total: 34.6s remaining: 2.48s
933: learn: 1651.7129760 total: 34.6s remaining: 2.44s
934: learn: 1651.6155328 total: 34.6s remaining: 2.41s
935: learn: 1651.4623266 total: 34.7s remaining: 2.37s
936: learn: 1651.3770334 total: 34.7s remaining: 2.33s
937: learn: 1651.2849192 total: 34.7s remaining: 2.3s
938: learn: 1651.2420981 total: 34.8s remaining: 2.26s
939: learn: 1651.1610870 total: 34.8s remaining: 2.22s
940: learn: 1651.0465573 total: 34.9s remaining: 2.19s
941: learn: 1650.9578085 total: 34.9s remaining: 2.15s
942: learn: 1650.8343009 total: 34.9s remaining: 2.11s
943: learn: 1650.7619780 total: 35s remaining: 2.07s
944: learn: 1650.5560382 total: 35s remaining: 2.04s
945: learn: 1650.5123775 total: 35s remaining: 2s
946: learn: 1650.4054168 total: 35.1s remaining: 1.96s
947: learn: 1650.2885719 total: 35.1s remaining: 1.93s
948: learn: 1650.1734628 total: 35.2s remaining: 1.89s
949: learn: 1650.0581258 total: 35.2s remaining: 1.85s
950: learn: 1649.9169632 total: 35.2s remaining: 1.81s
951: learn: 1649.8252828 total: 35.3s remaining: 1.78s
952: learn: 1649.7296482 total: 35.3s remaining: 1.74s
953: learn: 1649.6505258 total: 35.4s remaining: 1.71s
954: learn: 1649.5890916 total: 35.4s remaining: 1.67s
955: learn: 1649.4368426 total: 35.4s remaining: 1.63s
956: learn: 1649.3196911 total: 35.5s remaining: 1.59s
957: learn: 1649.2532661 total: 35.5s remaining: 1.56s
958: learn: 1649.2175616 total: 35.6s remaining: 1.52s
959: learn: 1649.0834561 total: 35.6s remaining: 1.48s
960: learn: 1649.0037356 total: 35.6s remaining: 1.45s
961: learn: 1648.8409269 total: 35.7s remaining: 1.41s
962: learn: 1648.7188453 total: 35.7s remaining: 1.37s
963: learn: 1648.6059574 total: 35.7s remaining: 1.33s
964: learn: 1648.5285705 total: 35.8s remaining: 1.3s
965: learn: 1648.3602970 total: 35.8s remaining: 1.26s
966: learn: 1648.1969677 total: 35.9s remaining: 1.22s
967: learn: 1648.0400003 total: 35.9s remaining: 1.19s
968: learn: 1647.9618039 total: 35.9s remaining: 1.15s
969: learn: 1647.8484358 total: 36s remaining: 1.11s
970: learn: 1647.7433993 total: 36s remaining: 1.07s
971: learn: 1647.5803916 total: 36.1s remaining: 1.04s
972: learn: 1647.4964278 total: 36.1s remaining: 1s
973: learn: 1647.3827909 total: 36.1s remaining: 965ms
974: learn: 1647.2962397 total: 36.2s remaining: 928ms
975: learn: 1647.1139250 total: 36.2s remaining: 891ms
976: learn: 1646.9720188 total: 36.2s remaining: 853ms
977: learn: 1646.8701372 total: 36.3s remaining: 816ms
978: learn: 1646.7621446 total: 36.3s remaining: 779ms
979: learn: 1646.5576286 total: 36.4s remaining: 742ms
980: learn: 1646.4652620 total: 36.4s remaining: 705ms
981: learn: 1646.3408469 total: 36.4s remaining: 668ms
982: learn: 1646.1384320 total: 36.5s remaining: 631ms
983: learn: 1646.0612687 total: 36.5s remaining: 594ms
984: learn: 1645.8514629 total: 36.6s remaining: 557ms
985: learn: 1645.7763870 total: 36.6s remaining: 520ms
986: learn: 1645.7180827 total: 36.6s remaining: 483ms
987: learn: 1645.5174151 total: 36.7s remaining: 445ms
988: learn: 1645.4243853 total: 36.7s remaining: 408ms
989: learn: 1645.3219164 total: 36.8s remaining: 371ms
990: learn: 1645.1874401 total: 36.8s remaining: 334ms
991: learn: 1645.1293047 total: 36.8s remaining: 297ms
992: learn: 1645.0970315 total: 36.9s remaining: 260ms
993: learn: 1644.9962728 total: 36.9s remaining: 223ms
994: learn: 1644.8872127 total: 36.9s remaining: 186ms
995: learn: 1644.8296122 total: 37s remaining: 149ms
996: learn: 1644.7116419 total: 37s remaining: 111ms
997: learn: 1644.6253627 total: 37.1s remaining: 74.3ms
998: learn: 1644.4871057 total: 37.1s remaining: 37.1ms
999: learn: 1644.4227966 total: 37.1s remaining: 0us
Learning rate set to 0.093467
0: learn: 4277.2386860 total: 37.5ms remaining: 37.5s
1: learn: 4032.6477010 total: 68.9ms remaining: 34.4s
2: learn: 3808.1555221 total: 97.9ms remaining: 32.5s
3: learn: 3616.0740922 total: 126ms remaining: 31.5s
4: learn: 3439.2300473 total: 163ms remaining: 32.4s
5: learn: 3285.7991890 total: 191ms remaining: 31.7s
6: learn: 3148.5306234 total: 219ms remaining: 31s
7: learn: 3024.1460373 total: 256ms remaining: 31.7s
8: learn: 2912.8322757 total: 283ms remaining: 31.2s
9: learn: 2817.5780104 total: 311ms remaining: 30.8s
10: learn: 2729.8572278 total: 348ms remaining: 31.3s
11: learn: 2652.9948381 total: 375ms remaining: 30.9s
12: learn: 2585.8922852 total: 403ms remaining: 30.6s
13: learn: 2524.4160891 total: 443ms remaining: 31.2s
14: learn: 2470.4920396 total: 473ms remaining: 31.1s
15: learn: 2423.9701369 total: 498ms remaining: 30.7s
16: learn: 2378.9911579 total: 533ms remaining: 30.8s
17: learn: 2342.1163650 total: 561ms remaining: 30.6s
18: learn: 2306.5154988 total: 588ms remaining: 30.4s
19: learn: 2277.2430070 total: 617ms remaining: 30.2s
20: learn: 2249.0935259 total: 651ms remaining: 30.3s
21: learn: 2225.5446163 total: 677ms remaining: 30.1s
22: learn: 2205.5099001 total: 703ms remaining: 29.9s
23: learn: 2185.4149713 total: 740ms remaining: 30.1s
24: learn: 2168.8686458 total: 766ms remaining: 29.9s
25: learn: 2152.6436513 total: 791ms remaining: 29.6s
26: learn: 2137.8076627 total: 822ms remaining: 29.6s
27: learn: 2123.2768969 total: 850ms remaining: 29.5s
28: learn: 2110.7885981 total: 876ms remaining: 29.3s
29: learn: 2100.0711229 total: 901ms remaining: 29.1s
30: learn: 2089.3710725 total: 934ms remaining: 29.2s
31: learn: 2080.0626025 total: 958ms remaining: 29s
32: learn: 2070.9291686 total: 985ms remaining: 28.9s
33: learn: 2063.3706741 total: 1.02s remaining: 29s
34: learn: 2056.0921242 total: 1.04s remaining: 28.8s
35: learn: 2049.5636179 total: 1.07s remaining: 28.7s
36: learn: 2043.4168011 total: 1.1s remaining: 28.6s
37: learn: 2035.1724959 total: 1.13s remaining: 28.6s
38: learn: 2026.5914843 total: 1.15s remaining: 28.4s
39: learn: 2022.2101683 total: 1.18s remaining: 28.3s
40: learn: 2018.1275903 total: 1.21s remaining: 28.4s
41: learn: 2010.6744150 total: 1.24s remaining: 28.3s
42: learn: 2006.0738133 total: 1.26s remaining: 28.2s
43: learn: 2001.8509896 total: 1.3s remaining: 28.2s
44: learn: 1997.8904058 total: 1.32s remaining: 28.1s
45: learn: 1993.7361384 total: 1.35s remaining: 27.9s
46: learn: 1989.9652636 total: 1.37s remaining: 27.8s
47: learn: 1986.7223824 total: 1.41s remaining: 27.9s
48: learn: 1981.9722053 total: 1.44s remaining: 27.9s
49: learn: 1978.8174458 total: 1.47s remaining: 27.9s
50: learn: 1976.2932818 total: 1.5s remaining: 28s
51: learn: 1970.6526902 total: 1.53s remaining: 27.9s
52: learn: 1967.9581424 total: 1.56s remaining: 27.9s
53: learn: 1965.4738345 total: 1.59s remaining: 27.9s
54: learn: 1962.5036508 total: 1.63s remaining: 28s
55: learn: 1958.6809921 total: 1.67s remaining: 28.1s
56: learn: 1955.5580781 total: 1.7s remaining: 28.2s
57: learn: 1953.3887981 total: 1.73s remaining: 28.2s
58: learn: 1951.6462817 total: 1.76s remaining: 28.1s
59: learn: 1949.0203845 total: 1.8s remaining: 28.2s
60: learn: 1946.1212020 total: 1.83s remaining: 28.2s
61: learn: 1941.9323941 total: 1.86s remaining: 28.1s
62: learn: 1940.2736286 total: 1.91s remaining: 28.3s
63: learn: 1938.2698606 total: 1.93s remaining: 28.2s
64: learn: 1936.6338561 total: 1.95s remaining: 28.1s
65: learn: 1933.7779590 total: 1.99s remaining: 28.1s
66: learn: 1931.3999515 total: 2.01s remaining: 28s
67: learn: 1929.8982848 total: 2.04s remaining: 27.9s
68: learn: 1927.7129755 total: 2.06s remaining: 27.8s
69: learn: 1926.1079148 total: 2.1s remaining: 27.8s
70: learn: 1924.8548996 total: 2.12s remaining: 27.8s
71: learn: 1923.2521141 total: 2.15s remaining: 27.7s
72: learn: 1921.0713832 total: 2.18s remaining: 27.7s
73: learn: 1919.9159201 total: 2.21s remaining: 27.6s
74: learn: 1917.0147653 total: 2.23s remaining: 27.6s
75: learn: 1915.5793419 total: 2.26s remaining: 27.5s
76: learn: 1913.9638962 total: 2.29s remaining: 27.5s
77: learn: 1911.7715678 total: 2.32s remaining: 27.4s
78: learn: 1909.6030625 total: 2.35s remaining: 27.3s
79: learn: 1907.7182271 total: 2.38s remaining: 27.4s
80: learn: 1904.7749589 total: 2.42s remaining: 27.4s
81: learn: 1902.4830619 total: 2.45s remaining: 27.4s
82: learn: 1900.3388165 total: 2.49s remaining: 27.5s
83: learn: 1899.2461629 total: 2.52s remaining: 27.5s
84: learn: 1897.8193110 total: 2.54s remaining: 27.4s
85: learn: 1895.2296976 total: 2.58s remaining: 27.4s
86: learn: 1893.6002197 total: 2.61s remaining: 27.4s
87: learn: 1892.1006985 total: 2.63s remaining: 27.3s
88: learn: 1890.6834909 total: 2.66s remaining: 27.3s
89: learn: 1889.7731538 total: 2.69s remaining: 27.2s
90: learn: 1888.0035842 total: 2.72s remaining: 27.2s
91: learn: 1886.2187124 total: 2.75s remaining: 27.1s
92: learn: 1884.3966666 total: 2.78s remaining: 27.1s
93: learn: 1883.2593955 total: 2.81s remaining: 27.1s
94: learn: 1881.9590722 total: 2.83s remaining: 27s
95: learn: 1880.9972773 total: 2.87s remaining: 27s
96: learn: 1879.6939212 total: 2.89s remaining: 26.9s
97: learn: 1879.1119393 total: 2.92s remaining: 26.9s
98: learn: 1877.7171932 total: 2.95s remaining: 26.8s
99: learn: 1876.5546709 total: 2.98s remaining: 26.8s
100: learn: 1875.6280646 total: 3.01s remaining: 26.8s
101: learn: 1874.4961281 total: 3.03s remaining: 26.7s
102: learn: 1873.3406081 total: 3.07s remaining: 26.8s
103: learn: 1871.7290135 total: 3.1s remaining: 26.7s
104: learn: 1870.0415272 total: 3.13s remaining: 26.7s
105: learn: 1868.4537925 total: 3.17s remaining: 26.7s
106: learn: 1867.0480355 total: 3.19s remaining: 26.7s
107: learn: 1866.2399327 total: 3.22s remaining: 26.6s
108: learn: 1865.5084659 total: 3.25s remaining: 26.6s
109: learn: 1864.1244326 total: 3.28s remaining: 26.5s
110: learn: 1863.1017070 total: 3.3s remaining: 26.5s
111: learn: 1861.8065286 total: 3.33s remaining: 26.4s
112: learn: 1860.8256031 total: 3.36s remaining: 26.4s
113: learn: 1859.9372856 total: 3.39s remaining: 26.3s
114: learn: 1859.4139952 total: 3.41s remaining: 26.3s
115: learn: 1858.5868863 total: 3.44s remaining: 26.2s
116: learn: 1857.5906761 total: 3.47s remaining: 26.2s
117: learn: 1856.7949388 total: 3.5s remaining: 26.1s
118: learn: 1855.8602484 total: 3.53s remaining: 26.1s
119: learn: 1855.0933068 total: 3.56s remaining: 26.1s
120: learn: 1853.9458085 total: 3.58s remaining: 26s
121: learn: 1852.9244955 total: 3.61s remaining: 26s
122: learn: 1851.7661373 total: 3.64s remaining: 26s
123: learn: 1851.1748177 total: 3.67s remaining: 25.9s
124: learn: 1850.5588761 total: 3.69s remaining: 25.9s
125: learn: 1849.0836991 total: 3.73s remaining: 25.8s
126: learn: 1847.8563631 total: 3.76s remaining: 25.8s
127: learn: 1846.8058164 total: 3.78s remaining: 25.8s
128: learn: 1845.8637404 total: 3.81s remaining: 25.7s
129: learn: 1845.1379105 total: 3.84s remaining: 25.7s
130: learn: 1844.2246736 total: 3.87s remaining: 25.7s
131: learn: 1843.3161483 total: 3.9s remaining: 25.6s
132: learn: 1842.4607064 total: 3.93s remaining: 25.6s
133: learn: 1841.3802894 total: 3.96s remaining: 25.6s
134: learn: 1840.3311672 total: 3.98s remaining: 25.5s
135: learn: 1839.7568608 total: 4.01s remaining: 25.5s
136: learn: 1839.1948021 total: 4.04s remaining: 25.5s
137: learn: 1838.7489777 total: 4.07s remaining: 25.4s
138: learn: 1837.8040611 total: 4.09s remaining: 25.4s
139: learn: 1837.1506449 total: 4.13s remaining: 25.4s
140: learn: 1836.3586191 total: 4.15s remaining: 25.3s
141: learn: 1835.5653833 total: 4.18s remaining: 25.3s
142: learn: 1834.2220680 total: 4.21s remaining: 25.2s
143: learn: 1833.2386940 total: 4.24s remaining: 25.2s
144: learn: 1832.6200268 total: 4.27s remaining: 25.2s
145: learn: 1832.0213275 total: 4.3s remaining: 25.2s
146: learn: 1831.2797574 total: 4.34s remaining: 25.2s
147: learn: 1830.7013471 total: 4.36s remaining: 25.1s
148: learn: 1830.2170310 total: 4.38s remaining: 25s
149: learn: 1829.5785941 total: 4.42s remaining: 25.1s
150: learn: 1828.8860979 total: 4.45s remaining: 25s
151: learn: 1828.2185925 total: 4.47s remaining: 25s
152: learn: 1827.6911506 total: 4.5s remaining: 24.9s
153: learn: 1826.8271491 total: 4.53s remaining: 24.9s
154: learn: 1826.0499855 total: 4.56s remaining: 24.9s
155: learn: 1825.0277780 total: 4.59s remaining: 24.8s
156: learn: 1824.0599318 total: 4.62s remaining: 24.8s
157: learn: 1823.5836558 total: 4.65s remaining: 24.8s
158: learn: 1823.1139242 total: 4.67s remaining: 24.7s
159: learn: 1822.2340815 total: 4.71s remaining: 24.7s
160: learn: 1821.6191909 total: 4.74s remaining: 24.7s
161: learn: 1820.7569769 total: 4.76s remaining: 24.6s
162: learn: 1820.0052953 total: 4.79s remaining: 24.6s
163: learn: 1819.0820714 total: 4.82s remaining: 24.6s
164: learn: 1818.2490231 total: 4.85s remaining: 24.5s
165: learn: 1817.8989493 total: 4.87s remaining: 24.5s
166: learn: 1817.2620924 total: 4.9s remaining: 24.5s
167: learn: 1816.7117130 total: 4.93s remaining: 24.4s
168: learn: 1816.1395479 total: 4.96s remaining: 24.4s
169: learn: 1815.7994350 total: 4.98s remaining: 24.3s
170: learn: 1815.2587213 total: 5.01s remaining: 24.3s
171: learn: 1814.7101885 total: 5.04s remaining: 24.3s
172: learn: 1813.9918959 total: 5.06s remaining: 24.2s
173: learn: 1813.3698600 total: 5.1s remaining: 24.2s
174: learn: 1812.5043932 total: 5.13s remaining: 24.2s
175: learn: 1812.0363191 total: 5.15s remaining: 24.1s
176: learn: 1811.2982057 total: 5.18s remaining: 24.1s
177: learn: 1810.6963365 total: 5.21s remaining: 24.1s
178: learn: 1810.0871833 total: 5.24s remaining: 24s
179: learn: 1809.7765654 total: 5.26s remaining: 24s
180: learn: 1809.3629627 total: 5.29s remaining: 24s
181: learn: 1808.8134918 total: 5.32s remaining: 23.9s
182: learn: 1808.5397309 total: 5.34s remaining: 23.9s
183: learn: 1808.0341984 total: 5.38s remaining: 23.9s
184: learn: 1807.3412671 total: 5.41s remaining: 23.8s
185: learn: 1806.6129288 total: 5.43s remaining: 23.8s
186: learn: 1806.2315900 total: 5.47s remaining: 23.8s
187: learn: 1805.7666876 total: 5.5s remaining: 23.8s
188: learn: 1805.3278984 total: 5.53s remaining: 23.7s
189: learn: 1804.8153356 total: 5.55s remaining: 23.7s
190: learn: 1804.1291547 total: 5.58s remaining: 23.7s
191: learn: 1803.1806384 total: 5.61s remaining: 23.6s
192: learn: 1802.6394194 total: 5.64s remaining: 23.6s
193: learn: 1802.0706489 total: 5.68s remaining: 23.6s
194: learn: 1801.4956422 total: 5.7s remaining: 23.5s
195: learn: 1801.1139697 total: 5.73s remaining: 23.5s
196: learn: 1800.5403291 total: 5.75s remaining: 23.5s
197: learn: 1800.1359796 total: 5.78s remaining: 23.4s
198: learn: 1799.6853290 total: 5.81s remaining: 23.4s
199: learn: 1799.1304371 total: 5.83s remaining: 23.3s
200: learn: 1798.4257208 total: 5.87s remaining: 23.3s
201: learn: 1797.6912991 total: 5.89s remaining: 23.3s
202: learn: 1797.0924777 total: 5.92s remaining: 23.2s
203: learn: 1796.7146422 total: 5.95s remaining: 23.2s
204: learn: 1796.2290387 total: 5.98s remaining: 23.2s
205: learn: 1795.5335020 total: 6s remaining: 23.1s
206: learn: 1795.1015976 total: 6.03s remaining: 23.1s
207: learn: 1794.4695869 total: 6.06s remaining: 23.1s
208: learn: 1793.9634650 total: 6.09s remaining: 23s
209: learn: 1793.3472727 total: 6.11s remaining: 23s
210: learn: 1792.7876973 total: 6.14s remaining: 23s
211: learn: 1792.2920042 total: 6.17s remaining: 22.9s
212: learn: 1791.5263013 total: 6.2s remaining: 22.9s
213: learn: 1791.1337845 total: 6.22s remaining: 22.9s
214: learn: 1790.7559309 total: 6.26s remaining: 22.8s
215: learn: 1790.5375905 total: 6.28s remaining: 22.8s
216: learn: 1789.9413151 total: 6.31s remaining: 22.8s
217: learn: 1789.3554876 total: 6.34s remaining: 22.7s
218: learn: 1788.9315425 total: 6.37s remaining: 22.7s
219: learn: 1788.5330345 total: 6.39s remaining: 22.7s
220: learn: 1788.0191809 total: 6.42s remaining: 22.6s
221: learn: 1787.5678315 total: 6.46s remaining: 22.6s
222: learn: 1786.7654300 total: 6.48s remaining: 22.6s
223: learn: 1786.4057842 total: 6.51s remaining: 22.6s
224: learn: 1785.9267508 total: 6.54s remaining: 22.5s
225: learn: 1785.4356716 total: 6.57s remaining: 22.5s
226: learn: 1784.8156856 total: 6.59s remaining: 22.5s
227: learn: 1784.1141773 total: 6.62s remaining: 22.4s
228: learn: 1783.7743057 total: 6.66s remaining: 22.4s
229: learn: 1783.4491244 total: 6.69s remaining: 22.4s
230: learn: 1783.0832457 total: 6.71s remaining: 22.4s
231: learn: 1782.8434703 total: 6.75s remaining: 22.3s
232: learn: 1782.4566895 total: 6.78s remaining: 22.3s
233: learn: 1781.8108693 total: 6.8s remaining: 22.3s
234: learn: 1781.3064620 total: 6.84s remaining: 22.3s
235: learn: 1780.8422530 total: 6.86s remaining: 22.2s
236: learn: 1780.2612283 total: 6.89s remaining: 22.2s
237: learn: 1779.8045193 total: 6.92s remaining: 22.2s
238: learn: 1779.1997873 total: 6.95s remaining: 22.1s
239: learn: 1778.7861735 total: 6.98s remaining: 22.1s
240: learn: 1778.1657852 total: 7s remaining: 22.1s
241: learn: 1777.8261026 total: 7.04s remaining: 22s
242: learn: 1777.2219901 total: 7.07s remaining: 22s
243: learn: 1776.7904951 total: 7.09s remaining: 22s
244: learn: 1776.4942244 total: 7.13s remaining: 22s
245: learn: 1776.1700501 total: 7.16s remaining: 21.9s
246: learn: 1775.7273573 total: 7.18s remaining: 21.9s
247: learn: 1775.4453699 total: 7.21s remaining: 21.9s
248: learn: 1775.2582803 total: 7.24s remaining: 21.8s
249: learn: 1774.7715611 total: 7.27s remaining: 21.8s
250: learn: 1774.3905857 total: 7.3s remaining: 21.8s
251: learn: 1773.9931519 total: 7.33s remaining: 21.8s
252: learn: 1773.5990154 total: 7.36s remaining: 21.7s
253: learn: 1773.1561994 total: 7.39s remaining: 21.7s
254: learn: 1772.7200998 total: 7.42s remaining: 21.7s
255: learn: 1772.4368066 total: 7.45s remaining: 21.7s
256: learn: 1772.1918295 total: 7.47s remaining: 21.6s
257: learn: 1771.8129810 total: 7.51s remaining: 21.6s
258: learn: 1771.2055706 total: 7.54s remaining: 21.6s
259: learn: 1770.6137641 total: 7.57s remaining: 21.5s
260: learn: 1770.1851959 total: 7.6s remaining: 21.5s
261: learn: 1769.6735399 total: 7.63s remaining: 21.5s
262: learn: 1769.4599843 total: 7.66s remaining: 21.5s
263: learn: 1768.9958686 total: 7.68s remaining: 21.4s
264: learn: 1768.7487235 total: 7.71s remaining: 21.4s
265: learn: 1768.4169105 total: 7.74s remaining: 21.4s
266: learn: 1767.9900595 total: 7.77s remaining: 21.3s
267: learn: 1767.6399494 total: 7.8s remaining: 21.3s
268: learn: 1767.3382464 total: 7.83s remaining: 21.3s
269: learn: 1766.9581579 total: 7.86s remaining: 21.2s
270: learn: 1766.6912953 total: 7.88s remaining: 21.2s
271: learn: 1766.3953943 total: 7.91s remaining: 21.2s
272: learn: 1766.0479860 total: 7.94s remaining: 21.1s
273: learn: 1765.7212446 total: 7.96s remaining: 21.1s
274: learn: 1765.4036985 total: 8s remaining: 21.1s
275: learn: 1765.0164153 total: 8.03s remaining: 21.1s
276: learn: 1764.4988623 total: 8.05s remaining: 21s
277: learn: 1764.1724654 total: 8.09s remaining: 21s
278: learn: 1763.7969171 total: 8.12s remaining: 21s
279: learn: 1763.4216090 total: 8.14s remaining: 20.9s
280: learn: 1763.1587711 total: 8.17s remaining: 20.9s
281: learn: 1762.9193544 total: 8.2s remaining: 20.9s
282: learn: 1762.4394396 total: 8.23s remaining: 20.9s
283: learn: 1762.1504811 total: 8.26s remaining: 20.8s
284: learn: 1761.9679651 total: 8.29s remaining: 20.8s
285: learn: 1761.6612142 total: 8.32s remaining: 20.8s
286: learn: 1761.1932486 total: 8.35s remaining: 20.7s
287: learn: 1760.7917529 total: 8.38s remaining: 20.7s
288: learn: 1760.3798841 total: 8.41s remaining: 20.7s
289: learn: 1760.0327060 total: 8.44s remaining: 20.7s
290: learn: 1759.7745621 total: 8.46s remaining: 20.6s
291: learn: 1759.2513694 total: 8.5s remaining: 20.6s
292: learn: 1758.9318977 total: 8.52s remaining: 20.6s
293: learn: 1758.7699805 total: 8.55s remaining: 20.5s
294: learn: 1758.4562110 total: 8.58s remaining: 20.5s
295: learn: 1757.9987372 total: 8.61s remaining: 20.5s
296: learn: 1757.7823393 total: 8.63s remaining: 20.4s
297: learn: 1757.4749337 total: 8.66s remaining: 20.4s
298: learn: 1757.0239135 total: 8.69s remaining: 20.4s
299: learn: 1756.6517902 total: 8.71s remaining: 20.3s
300: learn: 1756.3336632 total: 8.74s remaining: 20.3s
301: learn: 1756.0756178 total: 8.77s remaining: 20.3s
302: learn: 1755.7958319 total: 8.8s remaining: 20.2s
303: learn: 1755.5439262 total: 8.82s remaining: 20.2s
304: learn: 1755.2472297 total: 8.85s remaining: 20.2s
305: learn: 1754.8539476 total: 8.89s remaining: 20.2s
306: learn: 1754.5647213 total: 8.91s remaining: 20.1s
307: learn: 1754.2183540 total: 8.94s remaining: 20.1s
308: learn: 1754.0150596 total: 8.98s remaining: 20.1s
309: learn: 1753.5839210 total: 9.01s remaining: 20s
310: learn: 1753.3801192 total: 9.04s remaining: 20s
311: learn: 1752.9340494 total: 9.07s remaining: 20s
312: learn: 1752.6737970 total: 9.1s remaining: 20s
313: learn: 1752.4405622 total: 9.13s remaining: 19.9s
314: learn: 1752.0143585 total: 9.17s remaining: 19.9s
315: learn: 1751.7429201 total: 9.2s remaining: 19.9s
316: learn: 1751.4630161 total: 9.23s remaining: 19.9s
317: learn: 1751.0644207 total: 9.26s remaining: 19.9s
318: learn: 1750.7127820 total: 9.29s remaining: 19.8s
319: learn: 1750.3590842 total: 9.32s remaining: 19.8s
320: learn: 1750.1328069 total: 9.35s remaining: 19.8s
321: learn: 1749.8882872 total: 9.38s remaining: 19.7s
322: learn: 1749.6942677 total: 9.4s remaining: 19.7s
323: learn: 1749.2208487 total: 9.43s remaining: 19.7s
324: learn: 1748.8955142 total: 9.46s remaining: 19.7s
325: learn: 1748.6624081 total: 9.49s remaining: 19.6s
326: learn: 1748.3307721 total: 9.51s remaining: 19.6s
327: learn: 1748.0456127 total: 9.55s remaining: 19.6s
328: learn: 1747.7375802 total: 9.57s remaining: 19.5s
329: learn: 1747.4476781 total: 9.6s remaining: 19.5s
330: learn: 1747.0838595 total: 9.63s remaining: 19.5s
331: learn: 1746.8258646 total: 9.66s remaining: 19.4s
332: learn: 1746.6034330 total: 9.69s remaining: 19.4s
333: learn: 1746.3802371 total: 9.71s remaining: 19.4s
334: learn: 1745.9591388 total: 9.74s remaining: 19.3s
335: learn: 1745.7044707 total: 9.77s remaining: 19.3s
336: learn: 1745.4049604 total: 9.8s remaining: 19.3s
337: learn: 1745.1878059 total: 9.83s remaining: 19.3s
338: learn: 1744.9137669 total: 9.86s remaining: 19.2s
339: learn: 1744.5298261 total: 9.89s remaining: 19.2s
340: learn: 1744.2651723 total: 9.92s remaining: 19.2s
341: learn: 1743.8730136 total: 9.95s remaining: 19.1s
342: learn: 1743.5214814 total: 9.98s remaining: 19.1s
343: learn: 1743.1863890 total: 10s remaining: 19.1s
344: learn: 1742.8006334 total: 10s remaining: 19.1s
345: learn: 1742.6200979 total: 10.1s remaining: 19s
346: learn: 1742.4595162 total: 10.1s remaining: 19s
347: learn: 1742.1631047 total: 10.1s remaining: 19s
348: learn: 1741.9838450 total: 10.2s remaining: 18.9s
349: learn: 1741.6401679 total: 10.2s remaining: 18.9s
350: learn: 1741.3587550 total: 10.2s remaining: 18.9s
351: learn: 1741.0191492 total: 10.2s remaining: 18.9s
352: learn: 1740.7298219 total: 10.3s remaining: 18.8s
353: learn: 1740.2958804 total: 10.3s remaining: 18.8s
354: learn: 1739.9614148 total: 10.3s remaining: 18.8s
355: learn: 1739.6312553 total: 10.4s remaining: 18.7s
356: learn: 1739.3618050 total: 10.4s remaining: 18.7s
357: learn: 1739.1567641 total: 10.4s remaining: 18.7s
358: learn: 1738.9109630 total: 10.4s remaining: 18.6s
359: learn: 1738.6696861 total: 10.5s remaining: 18.6s
360: learn: 1738.3902903 total: 10.5s remaining: 18.6s
361: learn: 1738.1346637 total: 10.5s remaining: 18.6s
362: learn: 1737.7414617 total: 10.6s remaining: 18.5s
363: learn: 1737.4071684 total: 10.6s remaining: 18.5s
364: learn: 1737.0857966 total: 10.6s remaining: 18.5s
365: learn: 1736.7076707 total: 10.7s remaining: 18.5s
366: learn: 1736.3676687 total: 10.7s remaining: 18.4s
367: learn: 1736.1446879 total: 10.7s remaining: 18.4s
368: learn: 1735.7844798 total: 10.7s remaining: 18.4s
369: learn: 1735.5221539 total: 10.8s remaining: 18.3s
370: learn: 1735.2283852 total: 10.8s remaining: 18.3s
371: learn: 1734.9898507 total: 10.8s remaining: 18.3s
372: learn: 1734.6273420 total: 10.8s remaining: 18.2s
373: learn: 1734.4658828 total: 10.9s remaining: 18.2s
374: learn: 1734.1797135 total: 10.9s remaining: 18.2s
375: learn: 1733.8898912 total: 10.9s remaining: 18.1s
376: learn: 1733.5755101 total: 11s remaining: 18.1s
377: learn: 1733.3665108 total: 11s remaining: 18.1s
378: learn: 1733.0898889 total: 11s remaining: 18.1s
379: learn: 1732.7490094 total: 11s remaining: 18s
380: learn: 1732.4499560 total: 11.1s remaining: 18s
381: learn: 1732.1169000 total: 11.1s remaining: 18s
382: learn: 1731.7940426 total: 11.1s remaining: 17.9s
383: learn: 1731.5233118 total: 11.2s remaining: 17.9s
384: learn: 1731.1645556 total: 11.2s remaining: 17.9s
385: learn: 1730.7802649 total: 11.2s remaining: 17.9s
386: learn: 1730.4648749 total: 11.3s remaining: 17.8s
387: learn: 1730.2574649 total: 11.3s remaining: 17.8s
388: learn: 1730.0277637 total: 11.3s remaining: 17.8s
389: learn: 1729.7370470 total: 11.3s remaining: 17.7s
390: learn: 1729.3090300 total: 11.4s remaining: 17.7s
391: learn: 1729.0378373 total: 11.4s remaining: 17.7s
392: learn: 1728.7318887 total: 11.4s remaining: 17.7s
393: learn: 1728.4048513 total: 11.5s remaining: 17.6s
394: learn: 1728.0235725 total: 11.5s remaining: 17.6s
395: learn: 1727.6950999 total: 11.5s remaining: 17.6s
396: learn: 1727.4460374 total: 11.5s remaining: 17.5s
397: learn: 1727.1829721 total: 11.6s remaining: 17.5s
398: learn: 1726.9565435 total: 11.6s remaining: 17.5s
399: learn: 1726.6639978 total: 11.7s remaining: 17.5s
400: learn: 1726.3944984 total: 11.7s remaining: 17.5s
401: learn: 1725.8735467 total: 11.7s remaining: 17.4s
402: learn: 1725.7052120 total: 11.8s remaining: 17.4s
403: learn: 1725.5468968 total: 11.8s remaining: 17.4s
404: learn: 1725.3331349 total: 11.8s remaining: 17.4s
405: learn: 1725.0923359 total: 11.8s remaining: 17.3s
406: learn: 1724.9687416 total: 11.9s remaining: 17.3s
407: learn: 1724.8119787 total: 11.9s remaining: 17.3s
408: learn: 1724.5689603 total: 11.9s remaining: 17.3s
409: learn: 1724.2986576 total: 12s remaining: 17.2s
410: learn: 1724.1464751 total: 12s remaining: 17.2s
411: learn: 1723.8610766 total: 12s remaining: 17.2s
412: learn: 1723.6498411 total: 12.1s remaining: 17.1s
413: learn: 1723.4199699 total: 12.1s remaining: 17.1s
414: learn: 1723.2249446 total: 12.1s remaining: 17.1s
415: learn: 1722.9882141 total: 12.2s remaining: 17.1s
416: learn: 1722.8051836 total: 12.2s remaining: 17s
417: learn: 1722.4917493 total: 12.2s remaining: 17s
418: learn: 1722.2621785 total: 12.2s remaining: 17s
419: learn: 1722.0006083 total: 12.3s remaining: 16.9s
420: learn: 1721.8358539 total: 12.3s remaining: 16.9s
421: learn: 1721.4504458 total: 12.3s remaining: 16.9s
422: learn: 1721.2309071 total: 12.3s remaining: 16.8s
423: learn: 1721.0065340 total: 12.4s remaining: 16.8s
424: learn: 1720.7786383 total: 12.4s remaining: 16.8s
425: learn: 1720.5819168 total: 12.4s remaining: 16.8s
426: learn: 1720.4528220 total: 12.5s remaining: 16.7s
427: learn: 1720.2183993 total: 12.5s remaining: 16.7s
428: learn: 1720.0816345 total: 12.5s remaining: 16.6s
429: learn: 1719.5931471 total: 12.5s remaining: 16.6s
430: learn: 1719.4008621 total: 12.6s remaining: 16.6s
431: learn: 1719.1768370 total: 12.6s remaining: 16.6s
432: learn: 1719.0166373 total: 12.6s remaining: 16.5s
433: learn: 1718.7629883 total: 12.6s remaining: 16.5s
434: learn: 1718.4763898 total: 12.7s remaining: 16.5s
435: learn: 1718.1423764 total: 12.7s remaining: 16.4s
436: learn: 1717.8608265 total: 12.7s remaining: 16.4s
437: learn: 1717.7036752 total: 12.8s remaining: 16.4s
438: learn: 1717.3906696 total: 12.8s remaining: 16.3s
439: learn: 1717.1210499 total: 12.8s remaining: 16.3s
440: learn: 1716.9560759 total: 12.8s remaining: 16.3s
441: learn: 1716.7197737 total: 12.9s remaining: 16.3s
442: learn: 1716.5839613 total: 12.9s remaining: 16.2s
443: learn: 1716.3577222 total: 12.9s remaining: 16.2s
444: learn: 1716.1072867 total: 13s remaining: 16.2s
445: learn: 1715.7791102 total: 13s remaining: 16.1s
446: learn: 1715.5883602 total: 13s remaining: 16.1s
447: learn: 1715.2437751 total: 13s remaining: 16.1s
448: learn: 1714.9405904 total: 13.1s remaining: 16s
449: learn: 1714.5672153 total: 13.1s remaining: 16s
450: learn: 1714.1272687 total: 13.1s remaining: 16s
451: learn: 1713.8258765 total: 13.2s remaining: 16s
452: learn: 1713.5438880 total: 13.2s remaining: 15.9s
453: learn: 1713.3124349 total: 13.2s remaining: 15.9s
454: learn: 1712.8347346 total: 13.2s remaining: 15.9s
455: learn: 1712.6316354 total: 13.3s remaining: 15.8s
456: learn: 1712.4735989 total: 13.3s remaining: 15.8s
457: learn: 1712.2656260 total: 13.3s remaining: 15.8s
458: learn: 1712.1656384 total: 13.3s remaining: 15.7s
459: learn: 1711.9870762 total: 13.4s remaining: 15.7s
460: learn: 1711.8767364 total: 13.4s remaining: 15.7s
461: learn: 1711.6441626 total: 13.4s remaining: 15.6s
462: learn: 1711.4446273 total: 13.5s remaining: 15.6s
463: learn: 1711.0563310 total: 13.5s remaining: 15.6s
464: learn: 1710.7795536 total: 13.5s remaining: 15.6s
465: learn: 1710.5167999 total: 13.5s remaining: 15.5s
466: learn: 1710.0889112 total: 13.6s remaining: 15.5s
467: learn: 1709.9635676 total: 13.6s remaining: 15.5s
468: learn: 1709.7393706 total: 13.6s remaining: 15.4s
469: learn: 1709.5177423 total: 13.7s remaining: 15.4s
470: learn: 1709.2314713 total: 13.7s remaining: 15.4s
471: learn: 1709.0086938 total: 13.7s remaining: 15.3s
472: learn: 1708.7147268 total: 13.7s remaining: 15.3s
473: learn: 1708.4088735 total: 13.8s remaining: 15.3s
474: learn: 1708.2548565 total: 13.8s remaining: 15.3s
475: learn: 1707.8560462 total: 13.8s remaining: 15.2s
476: learn: 1707.6604211 total: 13.9s remaining: 15.2s
477: learn: 1707.5380311 total: 13.9s remaining: 15.2s
478: learn: 1707.4064951 total: 13.9s remaining: 15.1s
479: learn: 1707.1408656 total: 13.9s remaining: 15.1s
480: learn: 1706.9886452 total: 14s remaining: 15.1s
481: learn: 1706.7313445 total: 14s remaining: 15s
482: learn: 1706.5795363 total: 14s remaining: 15s
483: learn: 1706.4430943 total: 14.1s remaining: 15s
484: learn: 1706.3323181 total: 14.1s remaining: 15s
485: learn: 1706.0819412 total: 14.1s remaining: 14.9s
486: learn: 1705.8951706 total: 14.1s remaining: 14.9s
487: learn: 1705.6461846 total: 14.2s remaining: 14.9s
488: learn: 1705.3290078 total: 14.2s remaining: 14.8s
489: learn: 1705.0990387 total: 14.2s remaining: 14.8s
490: learn: 1704.8864308 total: 14.3s remaining: 14.8s
491: learn: 1704.6162689 total: 14.3s remaining: 14.8s
492: learn: 1704.4577032 total: 14.3s remaining: 14.7s
493: learn: 1704.2115296 total: 14.3s remaining: 14.7s
494: learn: 1703.9893058 total: 14.4s remaining: 14.7s
495: learn: 1703.8285473 total: 14.4s remaining: 14.6s
496: learn: 1703.6557770 total: 14.4s remaining: 14.6s
497: learn: 1703.4495885 total: 14.5s remaining: 14.6s
498: learn: 1703.2790702 total: 14.5s remaining: 14.5s
499: learn: 1703.1324970 total: 14.5s remaining: 14.5s
500: learn: 1702.9442527 total: 14.5s remaining: 14.5s
501: learn: 1702.7308946 total: 14.6s remaining: 14.4s
502: learn: 1702.5723240 total: 14.6s remaining: 14.4s
503: learn: 1702.3487256 total: 14.6s remaining: 14.4s
504: learn: 1702.1368932 total: 14.6s remaining: 14.4s
505: learn: 1701.9646900 total: 14.7s remaining: 14.3s
506: learn: 1701.6340688 total: 14.7s remaining: 14.3s
507: learn: 1701.4899583 total: 14.7s remaining: 14.3s
508: learn: 1701.3457213 total: 14.8s remaining: 14.2s
509: learn: 1701.1697283 total: 14.8s remaining: 14.2s
510: learn: 1701.0372405 total: 14.8s remaining: 14.2s
511: learn: 1700.9051215 total: 14.9s remaining: 14.2s
512: learn: 1700.7802272 total: 14.9s remaining: 14.1s
513: learn: 1700.6424140 total: 14.9s remaining: 14.1s
514: learn: 1700.4822122 total: 14.9s remaining: 14.1s
515: learn: 1700.2545427 total: 15s remaining: 14s
516: learn: 1700.1016135 total: 15s remaining: 14s
517: learn: 1699.9299846 total: 15s remaining: 14s
518: learn: 1699.7150241 total: 15.1s remaining: 14s
519: learn: 1699.5735557 total: 15.1s remaining: 13.9s
520: learn: 1699.4129720 total: 15.1s remaining: 13.9s
521: learn: 1699.2043953 total: 15.1s remaining: 13.9s
522: learn: 1698.9419279 total: 15.2s remaining: 13.8s
523: learn: 1698.7586777 total: 15.2s remaining: 13.8s
524: learn: 1698.5739071 total: 15.2s remaining: 13.8s
525: learn: 1698.3100633 total: 15.3s remaining: 13.7s
526: learn: 1698.1364775 total: 15.3s remaining: 13.7s
527: learn: 1697.9392171 total: 15.3s remaining: 13.7s
528: learn: 1697.6870421 total: 15.3s remaining: 13.7s
529: learn: 1697.4893731 total: 15.4s remaining: 13.6s
530: learn: 1697.2302035 total: 15.4s remaining: 13.6s
531: learn: 1697.1264438 total: 15.4s remaining: 13.6s
532: learn: 1697.0051951 total: 15.5s remaining: 13.6s
533: learn: 1696.7794168 total: 15.5s remaining: 13.5s
534: learn: 1696.6424670 total: 15.5s remaining: 13.5s
535: learn: 1696.4196493 total: 15.6s remaining: 13.5s
536: learn: 1696.2661922 total: 15.6s remaining: 13.4s
537: learn: 1696.0052766 total: 15.6s remaining: 13.4s
538: learn: 1695.8125702 total: 15.6s remaining: 13.4s
539: learn: 1695.5722747 total: 15.7s remaining: 13.3s
540: learn: 1695.3909911 total: 15.7s remaining: 13.3s
541: learn: 1695.2357349 total: 15.7s remaining: 13.3s
542: learn: 1694.9968641 total: 15.7s remaining: 13.3s
543: learn: 1694.8418895 total: 15.8s remaining: 13.2s
544: learn: 1694.6510611 total: 15.8s remaining: 13.2s
545: learn: 1694.4882830 total: 15.8s remaining: 13.2s
546: learn: 1694.2697286 total: 15.9s remaining: 13.1s
547: learn: 1694.1700307 total: 15.9s remaining: 13.1s
548: learn: 1693.9446996 total: 15.9s remaining: 13.1s
549: learn: 1693.8207678 total: 16s remaining: 13.1s
550: learn: 1693.6151541 total: 16s remaining: 13s
551: learn: 1693.4111451 total: 16s remaining: 13s
552: learn: 1693.1339002 total: 16s remaining: 13s
553: learn: 1692.8004559 total: 16.1s remaining: 12.9s
554: learn: 1692.6016845 total: 16.1s remaining: 12.9s
555: learn: 1692.3524062 total: 16.1s remaining: 12.9s
556: learn: 1692.2172105 total: 16.2s remaining: 12.9s
557: learn: 1692.1509968 total: 16.2s remaining: 12.8s
558: learn: 1691.9240536 total: 16.2s remaining: 12.8s
559: learn: 1691.6650618 total: 16.3s remaining: 12.8s
560: learn: 1691.4490233 total: 16.3s remaining: 12.7s
561: learn: 1691.2757003 total: 16.3s remaining: 12.7s
562: learn: 1691.1050821 total: 16.3s remaining: 12.7s
563: learn: 1690.9298014 total: 16.4s remaining: 12.7s
564: learn: 1690.7593795 total: 16.4s remaining: 12.6s
565: learn: 1690.4267327 total: 16.4s remaining: 12.6s
566: learn: 1690.0638899 total: 16.5s remaining: 12.6s
567: learn: 1689.9009723 total: 16.5s remaining: 12.5s
568: learn: 1689.7827637 total: 16.5s remaining: 12.5s
569: learn: 1689.6233618 total: 16.5s remaining: 12.5s
570: learn: 1689.4661668 total: 16.6s remaining: 12.5s
571: learn: 1689.3226015 total: 16.6s remaining: 12.4s
572: learn: 1689.1569215 total: 16.6s remaining: 12.4s
573: learn: 1688.8427672 total: 16.7s remaining: 12.4s
574: learn: 1688.6683430 total: 16.7s remaining: 12.3s
575: learn: 1688.4707827 total: 16.7s remaining: 12.3s
576: learn: 1688.2997034 total: 16.7s remaining: 12.3s
577: learn: 1688.0691792 total: 16.8s remaining: 12.3s
578: learn: 1687.9089709 total: 16.8s remaining: 12.2s
579: learn: 1687.7449830 total: 16.8s remaining: 12.2s
580: learn: 1687.5392990 total: 16.9s remaining: 12.2s
581: learn: 1687.3753262 total: 16.9s remaining: 12.1s
582: learn: 1687.2173582 total: 16.9s remaining: 12.1s
583: learn: 1687.0834067 total: 17s remaining: 12.1s
584: learn: 1686.9619118 total: 17s remaining: 12.1s
585: learn: 1686.8216626 total: 17s remaining: 12s
586: learn: 1686.6934718 total: 17s remaining: 12s
587: learn: 1686.5704256 total: 17.1s remaining: 12s
588: learn: 1686.4638830 total: 17.1s remaining: 11.9s
589: learn: 1686.2681391 total: 17.1s remaining: 11.9s
590: learn: 1686.1500491 total: 17.2s remaining: 11.9s
591: learn: 1685.7848879 total: 17.2s remaining: 11.9s
592: learn: 1685.5767093 total: 17.2s remaining: 11.8s
593: learn: 1685.3857174 total: 17.3s remaining: 11.8s
594: learn: 1685.1647869 total: 17.3s remaining: 11.8s
595: learn: 1684.9993421 total: 17.3s remaining: 11.7s
596: learn: 1684.9340374 total: 17.4s remaining: 11.7s
597: learn: 1684.7370741 total: 17.4s remaining: 11.7s
598: learn: 1684.6488975 total: 17.4s remaining: 11.7s
599: learn: 1684.4532853 total: 17.4s remaining: 11.6s
600: learn: 1684.3054463 total: 17.5s remaining: 11.6s
601: learn: 1684.1422881 total: 17.5s remaining: 11.6s
602: learn: 1683.9874557 total: 17.5s remaining: 11.5s
603: learn: 1683.7906024 total: 17.6s remaining: 11.5s
604: learn: 1683.6008706 total: 17.6s remaining: 11.5s
605: learn: 1683.4478961 total: 17.6s remaining: 11.4s
606: learn: 1683.2603235 total: 17.6s remaining: 11.4s
607: learn: 1682.9577354 total: 17.7s remaining: 11.4s
608: learn: 1682.7229346 total: 17.7s remaining: 11.4s
609: learn: 1682.5782078 total: 17.7s remaining: 11.3s
610: learn: 1682.4277250 total: 17.8s remaining: 11.3s
611: learn: 1682.2573466 total: 17.8s remaining: 11.3s
612: learn: 1682.1148474 total: 17.8s remaining: 11.3s
613: learn: 1682.0429406 total: 17.9s remaining: 11.2s
614: learn: 1681.9523659 total: 17.9s remaining: 11.2s
615: learn: 1681.7280430 total: 17.9s remaining: 11.2s
616: learn: 1681.5854086 total: 17.9s remaining: 11.1s
617: learn: 1681.3631487 total: 18s remaining: 11.1s
618: learn: 1681.2270050 total: 18s remaining: 11.1s
619: learn: 1681.0593979 total: 18s remaining: 11s
620: learn: 1680.9225028 total: 18s remaining: 11s
621: learn: 1680.7998821 total: 18.1s remaining: 11s
622: learn: 1680.6420615 total: 18.1s remaining: 11s
623: learn: 1680.4620367 total: 18.1s remaining: 10.9s
624: learn: 1680.2278570 total: 18.2s remaining: 10.9s
625: learn: 1679.9849113 total: 18.2s remaining: 10.9s
626: learn: 1679.8004431 total: 18.2s remaining: 10.8s
627: learn: 1679.6356711 total: 18.3s remaining: 10.8s
628: learn: 1679.4122985 total: 18.3s remaining: 10.8s
629: learn: 1679.2256760 total: 18.3s remaining: 10.8s
630: learn: 1679.0571388 total: 18.3s remaining: 10.7s
631: learn: 1678.8370154 total: 18.4s remaining: 10.7s
632: learn: 1678.6746439 total: 18.4s remaining: 10.7s
633: learn: 1678.5602932 total: 18.4s remaining: 10.6s
634: learn: 1678.3678930 total: 18.5s remaining: 10.6s
635: learn: 1678.2312164 total: 18.5s remaining: 10.6s
636: learn: 1678.0272103 total: 18.5s remaining: 10.6s
637: learn: 1677.9570091 total: 18.6s remaining: 10.5s
638: learn: 1677.7705891 total: 18.6s remaining: 10.5s
639: learn: 1677.6178469 total: 18.6s remaining: 10.5s
640: learn: 1677.3150912 total: 18.7s remaining: 10.4s
641: learn: 1677.1322319 total: 18.7s remaining: 10.4s
642: learn: 1676.9370416 total: 18.7s remaining: 10.4s
643: learn: 1676.7887142 total: 18.7s remaining: 10.4s
644: learn: 1676.6098884 total: 18.8s remaining: 10.3s
645: learn: 1676.4826128 total: 18.8s remaining: 10.3s
646: learn: 1676.2867199 total: 18.8s remaining: 10.3s
647: learn: 1676.1723545 total: 18.9s remaining: 10.2s
648: learn: 1676.0412755 total: 18.9s remaining: 10.2s
649: learn: 1675.7901147 total: 18.9s remaining: 10.2s
650: learn: 1675.6261420 total: 18.9s remaining: 10.2s
651: learn: 1675.4651997 total: 19s remaining: 10.1s
652: learn: 1675.3580253 total: 19s remaining: 10.1s
653: learn: 1675.2157450 total: 19s remaining: 10.1s
654: learn: 1675.0639806 total: 19.1s remaining: 10s
655: learn: 1675.0019543 total: 19.1s remaining: 10s
656: learn: 1674.9096325 total: 19.1s remaining: 9.98s
657: learn: 1674.8163987 total: 19.2s remaining: 9.95s
658: learn: 1674.6538250 total: 19.2s remaining: 9.93s
659: learn: 1674.5183279 total: 19.2s remaining: 9.9s
660: learn: 1674.3156237 total: 19.2s remaining: 9.87s
661: learn: 1674.0804233 total: 19.3s remaining: 9.84s
662: learn: 1673.8530593 total: 19.3s remaining: 9.81s
663: learn: 1673.6804681 total: 19.3s remaining: 9.79s
664: learn: 1673.5891327 total: 19.4s remaining: 9.76s
665: learn: 1673.4475777 total: 19.4s remaining: 9.73s
666: learn: 1673.3097337 total: 19.4s remaining: 9.7s
667: learn: 1673.1963480 total: 19.5s remaining: 9.67s
668: learn: 1673.0075437 total: 19.5s remaining: 9.64s
669: learn: 1672.8187252 total: 19.5s remaining: 9.62s
670: learn: 1672.6820960 total: 19.6s remaining: 9.59s
671: learn: 1672.5616633 total: 19.6s remaining: 9.56s
672: learn: 1672.4028104 total: 19.6s remaining: 9.53s
673: learn: 1672.2146590 total: 19.6s remaining: 9.5s
674: learn: 1672.0689577 total: 19.7s remaining: 9.47s
675: learn: 1671.9054512 total: 19.7s remaining: 9.44s
676: learn: 1671.8454341 total: 19.7s remaining: 9.41s
677: learn: 1671.7301053 total: 19.8s remaining: 9.38s
678: learn: 1671.5368074 total: 19.8s remaining: 9.36s
679: learn: 1671.2897378 total: 19.8s remaining: 9.33s
680: learn: 1671.0059839 total: 19.9s remaining: 9.31s
681: learn: 1670.8800207 total: 19.9s remaining: 9.28s
682: learn: 1670.7905654 total: 19.9s remaining: 9.24s
683: learn: 1670.5875903 total: 20s remaining: 9.22s
684: learn: 1670.4816350 total: 20s remaining: 9.19s
685: learn: 1670.2326904 total: 20s remaining: 9.16s
686: learn: 1670.0692922 total: 20s remaining: 9.13s
687: learn: 1669.9022250 total: 20.1s remaining: 9.1s
688: learn: 1669.8239963 total: 20.1s remaining: 9.07s
689: learn: 1669.6953137 total: 20.1s remaining: 9.04s
690: learn: 1669.5804847 total: 20.2s remaining: 9.01s
691: learn: 1669.5241003 total: 20.2s remaining: 8.98s
692: learn: 1669.3037806 total: 20.2s remaining: 8.95s
693: learn: 1669.1291526 total: 20.2s remaining: 8.92s
694: learn: 1668.9536510 total: 20.3s remaining: 8.89s
695: learn: 1668.8198107 total: 20.3s remaining: 8.87s
696: learn: 1668.7418047 total: 20.3s remaining: 8.84s
697: learn: 1668.6104481 total: 20.4s remaining: 8.81s
698: learn: 1668.2861595 total: 20.4s remaining: 8.78s
699: learn: 1668.1785980 total: 20.4s remaining: 8.75s
700: learn: 1668.1032665 total: 20.4s remaining: 8.72s
701: learn: 1667.9821402 total: 20.5s remaining: 8.69s
702: learn: 1667.8719981 total: 20.5s remaining: 8.66s
703: learn: 1667.8033297 total: 20.5s remaining: 8.63s
704: learn: 1667.6767404 total: 20.6s remaining: 8.61s
705: learn: 1667.6431346 total: 20.6s remaining: 8.57s
706: learn: 1667.5783451 total: 20.6s remaining: 8.54s
707: learn: 1667.3630410 total: 20.7s remaining: 8.52s
708: learn: 1667.2218648 total: 20.7s remaining: 8.49s
709: learn: 1667.0888187 total: 20.7s remaining: 8.46s
710: learn: 1666.8875215 total: 20.7s remaining: 8.43s
711: learn: 1666.7247152 total: 20.8s remaining: 8.4s
712: learn: 1666.5627260 total: 20.8s remaining: 8.37s
713: learn: 1666.4303443 total: 20.8s remaining: 8.34s
714: learn: 1666.3328721 total: 20.9s remaining: 8.31s
715: learn: 1666.2185652 total: 20.9s remaining: 8.29s
716: learn: 1666.0997685 total: 20.9s remaining: 8.26s
717: learn: 1665.9657274 total: 21s remaining: 8.23s
718: learn: 1665.7747743 total: 21s remaining: 8.21s
719: learn: 1665.7235641 total: 21s remaining: 8.18s
720: learn: 1665.6208865 total: 21.1s remaining: 8.15s
721: learn: 1665.5081453 total: 21.1s remaining: 8.13s
722: learn: 1665.3684899 total: 21.1s remaining: 8.1s
723: learn: 1665.1256088 total: 21.2s remaining: 8.07s
724: learn: 1664.9677016 total: 21.2s remaining: 8.04s
725: learn: 1664.8031268 total: 21.2s remaining: 8.02s
726: learn: 1664.6477978 total: 21.3s remaining: 7.99s
727: learn: 1664.5823660 total: 21.3s remaining: 7.96s
728: learn: 1664.4576320 total: 21.3s remaining: 7.93s
729: learn: 1664.3583129 total: 21.4s remaining: 7.9s
730: learn: 1664.2256381 total: 21.4s remaining: 7.87s
731: learn: 1664.0564342 total: 21.4s remaining: 7.84s
732: learn: 1663.7250182 total: 21.4s remaining: 7.81s
733: learn: 1663.5032602 total: 21.5s remaining: 7.78s
734: learn: 1663.2711849 total: 21.5s remaining: 7.75s
735: learn: 1663.1798552 total: 21.5s remaining: 7.72s
736: learn: 1663.0318694 total: 21.6s remaining: 7.69s
737: learn: 1662.8710314 total: 21.6s remaining: 7.66s
738: learn: 1662.7321918 total: 21.6s remaining: 7.63s
739: learn: 1662.5439969 total: 21.6s remaining: 7.6s
740: learn: 1662.4146058 total: 21.7s remaining: 7.57s
741: learn: 1662.2304933 total: 21.7s remaining: 7.55s
742: learn: 1662.0594733 total: 21.7s remaining: 7.52s
743: learn: 1661.9820192 total: 21.8s remaining: 7.49s
744: learn: 1661.6712399 total: 21.8s remaining: 7.46s
745: learn: 1661.5747247 total: 21.8s remaining: 7.43s
746: learn: 1661.4391614 total: 21.9s remaining: 7.41s
747: learn: 1661.3439686 total: 21.9s remaining: 7.38s
748: learn: 1661.1167348 total: 21.9s remaining: 7.35s
749: learn: 1660.9913182 total: 22s remaining: 7.32s
750: learn: 1660.9063178 total: 22s remaining: 7.29s
751: learn: 1660.8078721 total: 22s remaining: 7.26s
752: learn: 1660.6799985 total: 22s remaining: 7.23s
753: learn: 1660.5347506 total: 22.1s remaining: 7.2s
754: learn: 1660.4444240 total: 22.1s remaining: 7.17s
755: learn: 1660.3308743 total: 22.1s remaining: 7.14s
756: learn: 1660.2126637 total: 22.1s remaining: 7.11s
757: learn: 1660.0225519 total: 22.2s remaining: 7.08s
758: learn: 1659.9472686 total: 22.2s remaining: 7.05s
759: learn: 1659.8688535 total: 22.2s remaining: 7.02s
760: learn: 1659.6882989 total: 22.3s remaining: 6.99s
761: learn: 1659.5745620 total: 22.3s remaining: 6.96s
762: learn: 1659.5008574 total: 22.3s remaining: 6.93s
763: learn: 1659.3635984 total: 22.3s remaining: 6.9s
764: learn: 1659.2931793 total: 22.4s remaining: 6.87s
765: learn: 1659.1475174 total: 22.4s remaining: 6.84s
766: learn: 1659.0621497 total: 22.4s remaining: 6.81s
767: learn: 1658.8783379 total: 22.4s remaining: 6.78s
768: learn: 1658.7724839 total: 22.5s remaining: 6.75s
769: learn: 1658.5997745 total: 22.5s remaining: 6.72s
770: learn: 1658.4820268 total: 22.5s remaining: 6.69s
771: learn: 1658.3480213 total: 22.6s remaining: 6.66s
772: learn: 1658.2997785 total: 22.6s remaining: 6.63s
773: learn: 1658.2114792 total: 22.6s remaining: 6.6s
774: learn: 1658.1681374 total: 22.6s remaining: 6.57s
775: learn: 1657.9863993 total: 22.7s remaining: 6.54s
776: learn: 1657.9337327 total: 22.7s remaining: 6.51s
777: learn: 1657.8050027 total: 22.7s remaining: 6.48s
778: learn: 1657.7075561 total: 22.7s remaining: 6.45s
779: learn: 1657.4572815 total: 22.8s remaining: 6.42s
780: learn: 1657.3249606 total: 22.8s remaining: 6.39s
781: learn: 1657.2633278 total: 22.8s remaining: 6.36s
782: learn: 1657.1924793 total: 22.8s remaining: 6.33s
783: learn: 1657.1308049 total: 22.9s remaining: 6.3s
784: learn: 1656.9358269 total: 22.9s remaining: 6.27s
785: learn: 1656.8516296 total: 22.9s remaining: 6.24s
786: learn: 1656.6714112 total: 23s remaining: 6.21s
787: learn: 1656.6200426 total: 23s remaining: 6.18s
788: learn: 1656.3786527 total: 23s remaining: 6.15s
789: learn: 1656.2791209 total: 23s remaining: 6.12s
790: learn: 1656.1555381 total: 23.1s remaining: 6.09s
791: learn: 1656.0892004 total: 23.1s remaining: 6.06s
792: learn: 1655.9833136 total: 23.1s remaining: 6.03s
793: learn: 1655.8426979 total: 23.1s remaining: 6s
794: learn: 1655.7432422 total: 23.2s remaining: 5.97s
795: learn: 1655.6538100 total: 23.2s remaining: 5.94s
796: learn: 1655.4919839 total: 23.2s remaining: 5.91s
797: learn: 1655.4004694 total: 23.2s remaining: 5.88s
798: learn: 1655.2784826 total: 23.3s remaining: 5.86s
799: learn: 1655.1799682 total: 23.3s remaining: 5.83s
800: learn: 1654.9879784 total: 23.3s remaining: 5.8s
801: learn: 1654.8891580 total: 23.4s remaining: 5.77s
802: learn: 1654.7905689 total: 23.4s remaining: 5.74s
803: learn: 1654.5988556 total: 23.4s remaining: 5.71s
804: learn: 1654.4969478 total: 23.4s remaining: 5.68s
805: learn: 1654.3879817 total: 23.5s remaining: 5.65s
806: learn: 1654.3250362 total: 23.5s remaining: 5.62s
807: learn: 1654.1048255 total: 23.5s remaining: 5.59s
808: learn: 1653.9563398 total: 23.6s remaining: 5.56s
809: learn: 1653.7711298 total: 23.6s remaining: 5.53s
810: learn: 1653.5724000 total: 23.6s remaining: 5.5s
811: learn: 1653.4297717 total: 23.7s remaining: 5.48s
812: learn: 1653.3444509 total: 23.7s remaining: 5.45s
813: learn: 1653.2051971 total: 23.7s remaining: 5.42s
814: learn: 1653.1067730 total: 23.7s remaining: 5.39s
815: learn: 1653.0380138 total: 23.8s remaining: 5.36s
816: learn: 1652.9718116 total: 23.8s remaining: 5.33s
817: learn: 1652.8025921 total: 23.8s remaining: 5.3s
818: learn: 1652.7017675 total: 23.9s remaining: 5.27s
819: learn: 1652.6480054 total: 23.9s remaining: 5.24s
820: learn: 1652.5767603 total: 23.9s remaining: 5.21s
821: learn: 1652.3757188 total: 23.9s remaining: 5.18s
822: learn: 1652.2587807 total: 24s remaining: 5.16s
823: learn: 1652.0784629 total: 24s remaining: 5.13s
824: learn: 1651.9417322 total: 24s remaining: 5.1s
825: learn: 1651.7996393 total: 24.1s remaining: 5.07s
826: learn: 1651.5518396 total: 24.1s remaining: 5.04s
827: learn: 1651.3293451 total: 24.1s remaining: 5.01s
828: learn: 1651.1406178 total: 24.1s remaining: 4.98s
829: learn: 1651.0886518 total: 24.2s remaining: 4.95s
830: learn: 1650.9693678 total: 24.2s remaining: 4.92s
831: learn: 1650.7083634 total: 24.2s remaining: 4.89s
832: learn: 1650.4689711 total: 24.3s remaining: 4.86s
833: learn: 1650.2898676 total: 24.3s remaining: 4.83s
834: learn: 1650.1744473 total: 24.3s remaining: 4.8s
835: learn: 1650.0397776 total: 24.3s remaining: 4.78s
836: learn: 1649.9225184 total: 24.4s remaining: 4.75s
837: learn: 1649.8513921 total: 24.4s remaining: 4.72s
838: learn: 1649.7754737 total: 24.4s remaining: 4.69s
839: learn: 1649.6310682 total: 24.5s remaining: 4.66s
840: learn: 1649.5006096 total: 24.5s remaining: 4.63s
841: learn: 1649.3546379 total: 24.5s remaining: 4.6s
842: learn: 1649.2489637 total: 24.6s remaining: 4.57s
843: learn: 1649.1743167 total: 24.6s remaining: 4.54s
844: learn: 1649.0271489 total: 24.6s remaining: 4.52s
845: learn: 1648.9533715 total: 24.6s remaining: 4.49s
846: learn: 1648.8520581 total: 24.7s remaining: 4.46s
847: learn: 1648.7835959 total: 24.7s remaining: 4.43s
848: learn: 1648.6705578 total: 24.7s remaining: 4.4s
849: learn: 1648.5568898 total: 24.8s remaining: 4.37s
850: learn: 1648.4171182 total: 24.8s remaining: 4.34s
851: learn: 1648.2744400 total: 24.8s remaining: 4.31s
852: learn: 1648.1786282 total: 24.8s remaining: 4.28s
853: learn: 1648.0913977 total: 24.9s remaining: 4.25s
854: learn: 1647.8376577 total: 24.9s remaining: 4.22s
855: learn: 1647.8129033 total: 24.9s remaining: 4.19s
856: learn: 1647.7403333 total: 25s remaining: 4.16s
857: learn: 1647.6536967 total: 25s remaining: 4.13s
858: learn: 1647.4645691 total: 25s remaining: 4.11s
859: learn: 1647.1248062 total: 25s remaining: 4.08s
860: learn: 1646.9926983 total: 25.1s remaining: 4.05s
861: learn: 1646.8768315 total: 25.1s remaining: 4.02s
862: learn: 1646.7657501 total: 25.1s remaining: 3.99s
863: learn: 1646.6472210 total: 25.2s remaining: 3.96s
864: learn: 1646.5503609 total: 25.2s remaining: 3.93s
865: learn: 1646.4268556 total: 25.2s remaining: 3.9s
866: learn: 1646.3800948 total: 25.2s remaining: 3.87s
867: learn: 1646.2958666 total: 25.3s remaining: 3.84s
868: learn: 1646.1770951 total: 25.3s remaining: 3.81s
869: learn: 1646.0772712 total: 25.3s remaining: 3.78s
870: learn: 1645.9614394 total: 25.3s remaining: 3.75s
871: learn: 1645.9145574 total: 25.4s remaining: 3.73s
872: learn: 1645.7467503 total: 25.4s remaining: 3.7s
873: learn: 1645.7029527 total: 25.4s remaining: 3.67s
874: learn: 1645.6350654 total: 25.5s remaining: 3.64s
875: learn: 1645.5461468 total: 25.5s remaining: 3.61s
876: learn: 1645.4221690 total: 25.5s remaining: 3.58s
877: learn: 1645.3112056 total: 25.5s remaining: 3.55s
878: learn: 1645.1720099 total: 25.6s remaining: 3.52s
879: learn: 1644.9768722 total: 25.6s remaining: 3.49s
880: learn: 1644.9035241 total: 25.6s remaining: 3.46s
881: learn: 1644.7168954 total: 25.7s remaining: 3.43s
882: learn: 1644.6658919 total: 25.7s remaining: 3.4s
883: learn: 1644.5141809 total: 25.7s remaining: 3.38s
884: learn: 1644.4421866 total: 25.8s remaining: 3.35s
885: learn: 1644.3535951 total: 25.8s remaining: 3.32s
886: learn: 1644.1738932 total: 25.8s remaining: 3.29s
887: learn: 1644.0032082 total: 25.8s remaining: 3.26s
888: learn: 1643.9220343 total: 25.9s remaining: 3.23s
889: learn: 1643.7233862 total: 25.9s remaining: 3.2s
890: learn: 1643.5849140 total: 25.9s remaining: 3.17s
891: learn: 1643.4944688 total: 26s remaining: 3.14s
892: learn: 1643.4016479 total: 26s remaining: 3.11s
893: learn: 1643.3037820 total: 26s remaining: 3.08s
894: learn: 1643.1747685 total: 26s remaining: 3.06s
895: learn: 1643.0892863 total: 26.1s remaining: 3.03s
896: learn: 1642.8389551 total: 26.1s remaining: 3s
897: learn: 1642.6437440 total: 26.1s remaining: 2.97s
898: learn: 1642.5808519 total: 26.2s remaining: 2.94s
899: learn: 1642.4940310 total: 26.2s remaining: 2.91s
900: learn: 1642.3471813 total: 26.2s remaining: 2.88s
901: learn: 1642.2271629 total: 26.3s remaining: 2.85s
902: learn: 1642.1387080 total: 26.3s remaining: 2.82s
903: learn: 1642.0078092 total: 26.3s remaining: 2.79s
904: learn: 1641.9225001 total: 26.3s remaining: 2.77s
905: learn: 1641.8312013 total: 26.4s remaining: 2.74s
906: learn: 1641.7361952 total: 26.4s remaining: 2.71s
907: learn: 1641.6311369 total: 26.5s remaining: 2.68s
908: learn: 1641.5664414 total: 26.5s remaining: 2.65s
909: learn: 1641.5100752 total: 26.5s remaining: 2.62s
910: learn: 1641.3933162 total: 26.5s remaining: 2.59s
911: learn: 1641.2761493 total: 26.6s remaining: 2.56s
912: learn: 1641.1158090 total: 26.6s remaining: 2.53s
913: learn: 1641.0094889 total: 26.6s remaining: 2.51s
914: learn: 1640.9643126 total: 26.7s remaining: 2.48s
915: learn: 1640.7616467 total: 26.7s remaining: 2.45s
916: learn: 1640.6431269 total: 26.7s remaining: 2.42s
917: learn: 1640.4677812 total: 26.8s remaining: 2.39s
918: learn: 1640.3994504 total: 26.8s remaining: 2.36s
919: learn: 1640.3131512 total: 26.8s remaining: 2.33s
920: learn: 1640.1382643 total: 26.8s remaining: 2.3s
921: learn: 1640.0254308 total: 26.9s remaining: 2.27s
922: learn: 1639.9339304 total: 26.9s remaining: 2.24s
923: learn: 1639.8590696 total: 26.9s remaining: 2.21s
924: learn: 1639.7921716 total: 27s remaining: 2.19s
925: learn: 1639.6856556 total: 27s remaining: 2.16s
926: learn: 1639.5801026 total: 27s remaining: 2.13s
927: learn: 1639.4979233 total: 27s remaining: 2.1s
928: learn: 1639.2564722 total: 27.1s remaining: 2.07s
929: learn: 1639.1958209 total: 27.1s remaining: 2.04s
930: learn: 1639.0882047 total: 27.1s remaining: 2.01s
931: learn: 1638.9891140 total: 27.2s remaining: 1.98s
932: learn: 1638.8945513 total: 27.2s remaining: 1.95s
933: learn: 1638.8346825 total: 27.2s remaining: 1.92s
934: learn: 1638.6715397 total: 27.2s remaining: 1.89s
935: learn: 1638.5973436 total: 27.3s remaining: 1.86s
936: learn: 1638.5182031 total: 27.3s remaining: 1.83s
937: learn: 1638.4167795 total: 27.3s remaining: 1.81s
938: learn: 1638.2726922 total: 27.4s remaining: 1.78s
939: learn: 1638.2082184 total: 27.4s remaining: 1.75s
940: learn: 1638.1190096 total: 27.4s remaining: 1.72s
941: learn: 1637.9815290 total: 27.4s remaining: 1.69s
942: learn: 1637.7874971 total: 27.5s remaining: 1.66s
943: learn: 1637.6728511 total: 27.5s remaining: 1.63s
944: learn: 1637.5900000 total: 27.5s remaining: 1.6s
945: learn: 1637.3968202 total: 27.6s remaining: 1.57s
946: learn: 1637.3309657 total: 27.6s remaining: 1.54s
947: learn: 1637.1470105 total: 27.6s remaining: 1.51s
948: learn: 1636.9755155 total: 27.6s remaining: 1.49s
949: learn: 1636.8674865 total: 27.7s remaining: 1.46s
950: learn: 1636.8043718 total: 27.7s remaining: 1.43s
951: learn: 1636.7069882 total: 27.7s remaining: 1.4s
952: learn: 1636.6110330 total: 27.8s remaining: 1.37s
953: learn: 1636.4771642 total: 27.8s remaining: 1.34s
954: learn: 1636.4101498 total: 27.8s remaining: 1.31s
955: learn: 1636.2242997 total: 27.8s remaining: 1.28s
956: learn: 1636.0657794 total: 27.9s remaining: 1.25s
957: learn: 1635.9543358 total: 27.9s remaining: 1.22s
958: learn: 1635.8534374 total: 27.9s remaining: 1.19s
959: learn: 1635.7959567 total: 28s remaining: 1.17s
960: learn: 1635.6424488 total: 28s remaining: 1.14s
961: learn: 1635.5339222 total: 28s remaining: 1.11s
962: learn: 1635.4003301 total: 28.1s remaining: 1.08s
963: learn: 1635.3609981 total: 28.1s remaining: 1.05s
964: learn: 1635.2558747 total: 28.1s remaining: 1.02s
965: learn: 1635.1166317 total: 28.1s remaining: 991ms
966: learn: 1635.0391128 total: 28.2s remaining: 962ms
967: learn: 1634.8796060 total: 28.2s remaining: 932ms
968: learn: 1634.7164308 total: 28.2s remaining: 903ms
969: learn: 1634.6420026 total: 28.3s remaining: 874ms
970: learn: 1634.5466780 total: 28.3s remaining: 845ms
971: learn: 1634.4351428 total: 28.3s remaining: 816ms
972: learn: 1634.3092525 total: 28.4s remaining: 787ms
973: learn: 1634.1755026 total: 28.4s remaining: 758ms
974: learn: 1634.0352110 total: 28.4s remaining: 729ms
975: learn: 1633.9665497 total: 28.4s remaining: 700ms
976: learn: 1633.8193831 total: 28.5s remaining: 670ms
977: learn: 1633.7125721 total: 28.5s remaining: 641ms
978: learn: 1633.6248569 total: 28.5s remaining: 612ms
979: learn: 1633.5991355 total: 28.6s remaining: 583ms
980: learn: 1633.5084158 total: 28.6s remaining: 554ms
981: learn: 1633.4127890 total: 28.6s remaining: 525ms
982: learn: 1633.2675143 total: 28.7s remaining: 496ms
983: learn: 1633.1908785 total: 28.7s remaining: 466ms
984: learn: 1633.0911046 total: 28.7s remaining: 437ms
985: learn: 1632.9943457 total: 28.7s remaining: 408ms
986: learn: 1632.8874552 total: 28.8s remaining: 379ms
987: learn: 1632.7933168 total: 28.8s remaining: 350ms
988: learn: 1632.7031159 total: 28.9s remaining: 321ms
989: learn: 1632.6797276 total: 28.9s remaining: 292ms
990: learn: 1632.6054841 total: 28.9s remaining: 263ms
991: learn: 1632.4339542 total: 28.9s remaining: 233ms
992: learn: 1632.2224587 total: 29s remaining: 204ms
993: learn: 1632.1985260 total: 29s remaining: 175ms
994: learn: 1632.0828759 total: 29s remaining: 146ms
995: learn: 1631.9189624 total: 29.1s remaining: 117ms
996: learn: 1631.8043582 total: 29.1s remaining: 87.5ms
997: learn: 1631.6735051 total: 29.1s remaining: 58.4ms
998: learn: 1631.5437615 total: 29.2s remaining: 29.2ms
999: learn: 1631.4348315 total: 29.2s remaining: 0us
Learning rate set to 0.093467
0: learn: 4275.2355469 total: 28.6ms remaining: 28.6s
1: learn: 4025.9042026 total: 67.4ms remaining: 33.6s
2: learn: 3803.8634566 total: 97.3ms remaining: 32.3s
3: learn: 3610.7820397 total: 133ms remaining: 33.2s
4: learn: 3435.3061241 total: 176ms remaining: 35s
5: learn: 3285.8768362 total: 209ms remaining: 34.6s
6: learn: 3150.0529085 total: 247ms remaining: 35s
7: learn: 3031.0023248 total: 285ms remaining: 35.4s
8: learn: 2918.0691381 total: 322ms remaining: 35.5s
9: learn: 2819.2128047 total: 361ms remaining: 35.7s
10: learn: 2729.1363750 total: 402ms remaining: 36.1s
11: learn: 2653.4402673 total: 438ms remaining: 36s
12: learn: 2584.1778258 total: 467ms remaining: 35.4s
13: learn: 2524.5988310 total: 493ms remaining: 34.8s
14: learn: 2471.4374967 total: 524ms remaining: 34.4s
15: learn: 2423.3158891 total: 554ms remaining: 34.1s
16: learn: 2381.1458552 total: 580ms remaining: 33.6s
17: learn: 2344.8481438 total: 610ms remaining: 33.3s
18: learn: 2308.7842239 total: 647ms remaining: 33.4s
19: learn: 2277.3891642 total: 674ms remaining: 33s
20: learn: 2248.9745875 total: 701ms remaining: 32.7s
21: learn: 2225.5762773 total: 740ms remaining: 32.9s
22: learn: 2203.6921921 total: 768ms remaining: 32.6s
23: learn: 2183.9628465 total: 797ms remaining: 32.4s
24: learn: 2164.1732850 total: 832ms remaining: 32.4s
25: learn: 2147.5349410 total: 860ms remaining: 32.2s
26: learn: 2133.0298756 total: 889ms remaining: 32s
27: learn: 2119.7841882 total: 929ms remaining: 32.2s
28: learn: 2108.6253278 total: 959ms remaining: 32.1s
29: learn: 2097.9497470 total: 996ms remaining: 32.2s
30: learn: 2086.7779347 total: 1.03s remaining: 32.2s
31: learn: 2076.7509079 total: 1.06s remaining: 32s
32: learn: 2069.1232144 total: 1.08s remaining: 31.8s
33: learn: 2061.2506227 total: 1.12s remaining: 31.8s
34: learn: 2054.2583917 total: 1.14s remaining: 31.5s
35: learn: 2046.7331159 total: 1.17s remaining: 31.3s
36: learn: 2040.6416588 total: 1.2s remaining: 31.3s
37: learn: 2033.0436625 total: 1.24s remaining: 31.5s
38: learn: 2026.5709368 total: 1.27s remaining: 31.3s
39: learn: 2021.5127981 total: 1.31s remaining: 31.3s
40: learn: 2016.0610174 total: 1.33s remaining: 31.2s
41: learn: 2011.2965279 total: 1.36s remaining: 30.9s
42: learn: 2006.7963773 total: 1.39s remaining: 30.9s
43: learn: 2002.5893536 total: 1.42s remaining: 30.8s
44: learn: 1996.7236360 total: 1.44s remaining: 30.6s
45: learn: 1991.4611801 total: 1.47s remaining: 30.4s
46: learn: 1986.9498050 total: 1.5s remaining: 30.4s
47: learn: 1983.4790205 total: 1.52s remaining: 30.2s
48: learn: 1978.7046377 total: 1.55s remaining: 30.1s
49: learn: 1975.9126878 total: 1.58s remaining: 30.1s
50: learn: 1972.9554326 total: 1.61s remaining: 30s
51: learn: 1969.9208506 total: 1.64s remaining: 29.9s
52: learn: 1966.9283324 total: 1.66s remaining: 29.7s
53: learn: 1964.6916717 total: 1.69s remaining: 29.7s
54: learn: 1962.4120299 total: 1.72s remaining: 29.5s
55: learn: 1958.7038595 total: 1.74s remaining: 29.4s
56: learn: 1956.6624735 total: 1.77s remaining: 29.3s
57: learn: 1954.4425003 total: 1.8s remaining: 29.3s
58: learn: 1952.0327671 total: 1.83s remaining: 29.1s
59: learn: 1948.1225772 total: 1.85s remaining: 29s
60: learn: 1944.5625270 total: 1.89s remaining: 29.1s
61: learn: 1942.7260018 total: 1.91s remaining: 29s
62: learn: 1940.2090193 total: 1.94s remaining: 28.8s
63: learn: 1938.5597173 total: 1.97s remaining: 28.8s
64: learn: 1936.1187662 total: 1.99s remaining: 28.7s
65: learn: 1933.6530626 total: 2.02s remaining: 28.6s
66: learn: 1930.1922692 total: 2.05s remaining: 28.5s
67: learn: 1927.4618600 total: 2.08s remaining: 28.5s
68: learn: 1925.8785241 total: 2.1s remaining: 28.4s
69: learn: 1924.3308700 total: 2.13s remaining: 28.3s
70: learn: 1922.9165511 total: 2.16s remaining: 28.2s
71: learn: 1920.0692379 total: 2.19s remaining: 28.2s
72: learn: 1918.4006003 total: 2.21s remaining: 28.1s
73: learn: 1917.2542984 total: 2.23s remaining: 28s
74: learn: 1914.9609135 total: 2.27s remaining: 28s
75: learn: 1913.3665381 total: 2.29s remaining: 27.9s
76: learn: 1910.4657974 total: 2.32s remaining: 27.8s
77: learn: 1908.3855877 total: 2.35s remaining: 27.8s
78: learn: 1906.9132255 total: 2.38s remaining: 27.8s
79: learn: 1906.0333023 total: 2.4s remaining: 27.7s
80: learn: 1903.7745586 total: 2.43s remaining: 27.6s
81: learn: 1901.5524580 total: 2.47s remaining: 27.6s
82: learn: 1899.7267866 total: 2.49s remaining: 27.5s
83: learn: 1897.7407369 total: 2.52s remaining: 27.5s
84: learn: 1896.6584460 total: 2.55s remaining: 27.5s
85: learn: 1895.8617452 total: 2.58s remaining: 27.4s
86: learn: 1893.9479856 total: 2.6s remaining: 27.3s
87: learn: 1892.0844051 total: 2.63s remaining: 27.2s
88: learn: 1890.4218763 total: 2.66s remaining: 27.3s
89: learn: 1889.0388874 total: 2.69s remaining: 27.2s
90: learn: 1888.1222622 total: 2.71s remaining: 27.1s
91: learn: 1886.4377236 total: 2.75s remaining: 27.1s
92: learn: 1885.0900132 total: 2.78s remaining: 27.1s
93: learn: 1883.8490530 total: 2.81s remaining: 27.1s
94: learn: 1882.4755718 total: 2.84s remaining: 27s
95: learn: 1880.3721267 total: 2.87s remaining: 27s
96: learn: 1879.0885065 total: 2.89s remaining: 26.9s
97: learn: 1878.3138725 total: 2.92s remaining: 26.8s
98: learn: 1876.7799522 total: 2.95s remaining: 26.9s
99: learn: 1875.9146245 total: 2.98s remaining: 26.8s
100: learn: 1874.6507743 total: 3s remaining: 26.7s
101: learn: 1873.4305932 total: 3.03s remaining: 26.7s
102: learn: 1872.7122821 total: 3.06s remaining: 26.6s
103: learn: 1870.9863111 total: 3.08s remaining: 26.6s
104: learn: 1869.9058915 total: 3.11s remaining: 26.5s
105: learn: 1868.5167354 total: 3.15s remaining: 26.5s
106: learn: 1867.8366988 total: 3.17s remaining: 26.5s
107: learn: 1866.2896978 total: 3.2s remaining: 26.4s
108: learn: 1865.1700683 total: 3.23s remaining: 26.4s
109: learn: 1863.4106343 total: 3.25s remaining: 26.3s
110: learn: 1862.2078847 total: 3.28s remaining: 26.3s
111: learn: 1860.9965168 total: 3.3s remaining: 26.2s
112: learn: 1859.9207966 total: 3.34s remaining: 26.2s
113: learn: 1859.2084101 total: 3.36s remaining: 26.1s
114: learn: 1858.6863591 total: 3.38s remaining: 26.1s
115: learn: 1857.8922929 total: 3.41s remaining: 26s
116: learn: 1856.6329072 total: 3.44s remaining: 26s
117: learn: 1855.4936424 total: 3.48s remaining: 26s
118: learn: 1854.2760233 total: 3.5s remaining: 26s
119: learn: 1853.7396066 total: 3.53s remaining: 25.9s
120: learn: 1852.2226495 total: 3.56s remaining: 25.9s
121: learn: 1851.2346821 total: 3.58s remaining: 25.8s
122: learn: 1850.3090659 total: 3.62s remaining: 25.8s
123: learn: 1849.4995269 total: 3.64s remaining: 25.7s
124: learn: 1848.3766238 total: 3.67s remaining: 25.7s
125: learn: 1847.3531351 total: 3.69s remaining: 25.6s
126: learn: 1846.5934585 total: 3.73s remaining: 25.6s
127: learn: 1845.4459636 total: 3.76s remaining: 25.6s
128: learn: 1844.8998429 total: 3.78s remaining: 25.5s
129: learn: 1844.3610185 total: 3.81s remaining: 25.5s
130: learn: 1843.6393204 total: 3.84s remaining: 25.5s
131: learn: 1842.6493689 total: 3.86s remaining: 25.4s
132: learn: 1842.0389953 total: 3.89s remaining: 25.4s
133: learn: 1841.3964055 total: 3.92s remaining: 25.4s
134: learn: 1840.3015273 total: 3.95s remaining: 25.3s
135: learn: 1839.8102330 total: 3.97s remaining: 25.2s
136: learn: 1838.9469464 total: 4.01s remaining: 25.2s
137: learn: 1838.3926390 total: 4.03s remaining: 25.2s
138: learn: 1837.2966070 total: 4.06s remaining: 25.1s
139: learn: 1836.1794755 total: 4.09s remaining: 25.1s
140: learn: 1835.2427953 total: 4.12s remaining: 25.1s
141: learn: 1834.2330111 total: 4.14s remaining: 25s
142: learn: 1833.3917824 total: 4.17s remaining: 25s
143: learn: 1832.6245671 total: 4.21s remaining: 25s
144: learn: 1832.0635490 total: 4.23s remaining: 25s
145: learn: 1831.1364408 total: 4.26s remaining: 24.9s
146: learn: 1830.4837790 total: 4.29s remaining: 24.9s
147: learn: 1829.5169175 total: 4.32s remaining: 24.9s
148: learn: 1828.7698322 total: 4.34s remaining: 24.8s
149: learn: 1828.2531950 total: 4.37s remaining: 24.7s
150: learn: 1827.2319691 total: 4.4s remaining: 24.7s
151: learn: 1826.6235117 total: 4.42s remaining: 24.7s
152: learn: 1825.7540078 total: 4.45s remaining: 24.6s
153: learn: 1825.1724332 total: 4.48s remaining: 24.6s
154: learn: 1824.7042380 total: 4.51s remaining: 24.6s
155: learn: 1824.1956086 total: 4.53s remaining: 24.5s
156: learn: 1823.6827111 total: 4.55s remaining: 24.5s
157: learn: 1822.9004302 total: 4.59s remaining: 24.5s
158: learn: 1822.4200255 total: 4.62s remaining: 24.4s
159: learn: 1821.5698627 total: 4.64s remaining: 24.4s
160: learn: 1821.1689057 total: 4.67s remaining: 24.3s
161: learn: 1820.1894348 total: 4.7s remaining: 24.3s
162: learn: 1819.3021322 total: 4.72s remaining: 24.3s
163: learn: 1818.3812561 total: 4.75s remaining: 24.2s
164: learn: 1817.6083088 total: 4.79s remaining: 24.2s
165: learn: 1816.8873970 total: 4.82s remaining: 24.2s
166: learn: 1816.4461884 total: 4.84s remaining: 24.2s
167: learn: 1815.8642491 total: 4.88s remaining: 24.1s
168: learn: 1815.3104113 total: 4.91s remaining: 24.1s
169: learn: 1814.4733764 total: 4.93s remaining: 24.1s
170: learn: 1814.0508715 total: 4.95s remaining: 24s
171: learn: 1813.6177374 total: 4.99s remaining: 24s
172: learn: 1813.2137011 total: 5.01s remaining: 24s
173: learn: 1812.4944938 total: 5.04s remaining: 23.9s
174: learn: 1811.7996304 total: 5.07s remaining: 23.9s
175: learn: 1811.0102690 total: 5.1s remaining: 23.9s
176: learn: 1810.4881810 total: 5.12s remaining: 23.8s
177: learn: 1810.0756338 total: 5.15s remaining: 23.8s
178: learn: 1809.5094234 total: 5.18s remaining: 23.8s
179: learn: 1809.0209057 total: 5.21s remaining: 23.7s
180: learn: 1808.3244739 total: 5.24s remaining: 23.7s
181: learn: 1807.7461368 total: 5.27s remaining: 23.7s
182: learn: 1806.9991916 total: 5.3s remaining: 23.6s
183: learn: 1806.3294584 total: 5.32s remaining: 23.6s
184: learn: 1805.7780162 total: 5.35s remaining: 23.6s
185: learn: 1805.2922564 total: 5.38s remaining: 23.6s
186: learn: 1805.0092380 total: 5.41s remaining: 23.5s
187: learn: 1804.3564023 total: 5.43s remaining: 23.5s
188: learn: 1803.8581654 total: 5.46s remaining: 23.5s
189: learn: 1803.5123565 total: 5.49s remaining: 23.4s
190: learn: 1802.8130040 total: 5.52s remaining: 23.4s
191: learn: 1802.2732641 total: 5.55s remaining: 23.4s
192: learn: 1801.5374844 total: 5.58s remaining: 23.3s
193: learn: 1800.9621504 total: 5.61s remaining: 23.3s
194: learn: 1800.5380463 total: 5.63s remaining: 23.2s
195: learn: 1800.1985516 total: 5.67s remaining: 23.2s
196: learn: 1799.4326533 total: 5.69s remaining: 23.2s
197: learn: 1798.8454802 total: 5.72s remaining: 23.2s
198: learn: 1798.3609811 total: 5.75s remaining: 23.1s
199: learn: 1797.6274230 total: 5.78s remaining: 23.1s
200: learn: 1797.3824334 total: 5.8s remaining: 23.1s
201: learn: 1796.9489100 total: 5.83s remaining: 23s
202: learn: 1796.3121909 total: 5.86s remaining: 23s
203: learn: 1795.7837712 total: 5.89s remaining: 23s
204: learn: 1795.3339366 total: 5.92s remaining: 22.9s
205: learn: 1794.7342778 total: 5.95s remaining: 22.9s
206: learn: 1794.3554465 total: 5.98s remaining: 22.9s
207: learn: 1793.7469293 total: 6.01s remaining: 22.9s
208: learn: 1792.9032786 total: 6.04s remaining: 22.9s
209: learn: 1792.5501973 total: 6.07s remaining: 22.8s
210: learn: 1791.8988305 total: 6.09s remaining: 22.8s
211: learn: 1791.3431591 total: 6.13s remaining: 22.8s
212: learn: 1790.7115494 total: 6.16s remaining: 22.8s
213: learn: 1790.3550288 total: 6.18s remaining: 22.7s
214: learn: 1789.7201395 total: 6.21s remaining: 22.7s
215: learn: 1789.1616176 total: 6.25s remaining: 22.7s
216: learn: 1788.6257476 total: 6.27s remaining: 22.6s
217: learn: 1787.9189065 total: 6.3s remaining: 22.6s
218: learn: 1787.4181256 total: 6.33s remaining: 22.6s
219: learn: 1786.8979180 total: 6.36s remaining: 22.5s
220: learn: 1786.4763998 total: 6.38s remaining: 22.5s
221: learn: 1786.0667049 total: 6.42s remaining: 22.5s
222: learn: 1785.6237481 total: 6.45s remaining: 22.5s
223: learn: 1785.2257705 total: 6.47s remaining: 22.4s
224: learn: 1784.7061464 total: 6.5s remaining: 22.4s
225: learn: 1784.5005711 total: 6.53s remaining: 22.4s
226: learn: 1783.8337504 total: 6.56s remaining: 22.3s
227: learn: 1783.3570839 total: 6.58s remaining: 22.3s
228: learn: 1783.0367646 total: 6.61s remaining: 22.3s
229: learn: 1782.7279734 total: 6.64s remaining: 22.2s
230: learn: 1782.4528362 total: 6.66s remaining: 22.2s
231: learn: 1782.0622218 total: 6.69s remaining: 22.2s
232: learn: 1781.8016494 total: 6.73s remaining: 22.2s
233: learn: 1781.2871844 total: 6.76s remaining: 22.1s
234: learn: 1780.9025503 total: 6.78s remaining: 22.1s
235: learn: 1780.2730839 total: 6.82s remaining: 22.1s
236: learn: 1779.8837391 total: 6.85s remaining: 22s
237: learn: 1779.5320131 total: 6.87s remaining: 22s
238: learn: 1778.7360598 total: 6.91s remaining: 22s
239: learn: 1778.3107353 total: 6.93s remaining: 22s
240: learn: 1777.8407073 total: 6.96s remaining: 21.9s
241: learn: 1777.4187280 total: 6.99s remaining: 21.9s
242: learn: 1777.2415233 total: 7.01s remaining: 21.9s
243: learn: 1776.7103374 total: 7.04s remaining: 21.8s
244: learn: 1776.3044193 total: 7.07s remaining: 21.8s
245: learn: 1776.0646215 total: 7.1s remaining: 21.8s
246: learn: 1775.7753970 total: 7.13s remaining: 21.7s
247: learn: 1775.3383548 total: 7.15s remaining: 21.7s
248: learn: 1775.0672711 total: 7.18s remaining: 21.7s
249: learn: 1774.6143437 total: 7.21s remaining: 21.6s
250: learn: 1774.1800994 total: 7.24s remaining: 21.6s
251: learn: 1773.9528720 total: 7.26s remaining: 21.6s
252: learn: 1773.5084504 total: 7.3s remaining: 21.5s
253: learn: 1773.3388978 total: 7.32s remaining: 21.5s
254: learn: 1772.7296413 total: 7.35s remaining: 21.5s
255: learn: 1772.3648519 total: 7.38s remaining: 21.5s
256: learn: 1771.9886721 total: 7.41s remaining: 21.4s
257: learn: 1771.7097131 total: 7.44s remaining: 21.4s
258: learn: 1771.4977019 total: 7.46s remaining: 21.3s
259: learn: 1771.0345109 total: 7.49s remaining: 21.3s
260: learn: 1770.6753839 total: 7.52s remaining: 21.3s
261: learn: 1770.3047685 total: 7.55s remaining: 21.3s
262: learn: 1769.9369181 total: 7.58s remaining: 21.3s
263: learn: 1769.6042869 total: 7.61s remaining: 21.2s
264: learn: 1769.3256619 total: 7.63s remaining: 21.2s
265: learn: 1768.9840020 total: 7.66s remaining: 21.1s
266: learn: 1768.3395188 total: 7.69s remaining: 21.1s
267: learn: 1768.1601042 total: 7.72s remaining: 21.1s
268: learn: 1767.9112095 total: 7.75s remaining: 21s
269: learn: 1767.7154445 total: 7.78s remaining: 21s
270: learn: 1767.4481872 total: 7.8s remaining: 21s
271: learn: 1767.3098904 total: 7.83s remaining: 21s
272: learn: 1766.8607288 total: 7.86s remaining: 20.9s
273: learn: 1766.0882817 total: 7.89s remaining: 20.9s
274: learn: 1765.8752130 total: 7.92s remaining: 20.9s
275: learn: 1765.6948227 total: 7.94s remaining: 20.8s
276: learn: 1765.1899312 total: 7.97s remaining: 20.8s
277: learn: 1764.7933506 total: 8s remaining: 20.8s
278: learn: 1764.6314409 total: 8.02s remaining: 20.7s
279: learn: 1764.2633840 total: 8.06s remaining: 20.7s
280: learn: 1763.8723450 total: 8.09s remaining: 20.7s
281: learn: 1763.5559212 total: 8.11s remaining: 20.7s
282: learn: 1763.3899665 total: 8.14s remaining: 20.6s
283: learn: 1762.9338922 total: 8.17s remaining: 20.6s
284: learn: 1762.5043302 total: 8.2s remaining: 20.6s
285: learn: 1762.0620516 total: 8.22s remaining: 20.5s
286: learn: 1761.7059080 total: 8.26s remaining: 20.5s
287: learn: 1761.3185166 total: 8.29s remaining: 20.5s
288: learn: 1760.9604407 total: 8.32s remaining: 20.5s
289: learn: 1760.5499314 total: 8.35s remaining: 20.4s
290: learn: 1760.2409451 total: 8.38s remaining: 20.4s
291: learn: 1759.8866814 total: 8.4s remaining: 20.4s
292: learn: 1759.3913073 total: 8.43s remaining: 20.4s
293: learn: 1759.0275942 total: 8.46s remaining: 20.3s
294: learn: 1758.7501972 total: 8.49s remaining: 20.3s
295: learn: 1758.3798634 total: 8.52s remaining: 20.3s
296: learn: 1758.2065168 total: 8.55s remaining: 20.2s
297: learn: 1757.6037220 total: 8.59s remaining: 20.2s
298: learn: 1757.1806139 total: 8.63s remaining: 20.2s
299: learn: 1756.7947900 total: 8.67s remaining: 20.2s
300: learn: 1756.6147921 total: 8.7s remaining: 20.2s
301: learn: 1756.1302881 total: 8.73s remaining: 20.2s
302: learn: 1755.5556848 total: 8.76s remaining: 20.2s
303: learn: 1755.2214368 total: 8.79s remaining: 20.1s
304: learn: 1754.9375655 total: 8.82s remaining: 20.1s
305: learn: 1754.6108611 total: 8.85s remaining: 20.1s
306: learn: 1754.2558761 total: 8.88s remaining: 20s
307: learn: 1753.9377721 total: 8.9s remaining: 20s
308: learn: 1753.6246321 total: 8.94s remaining: 20s
309: learn: 1753.2224482 total: 8.97s remaining: 20s
310: learn: 1752.8451765 total: 8.99s remaining: 19.9s
311: learn: 1752.4246856 total: 9.02s remaining: 19.9s
312: learn: 1752.0314788 total: 9.05s remaining: 19.9s
313: learn: 1751.7570586 total: 9.08s remaining: 19.8s
314: learn: 1751.3993996 total: 9.11s remaining: 19.8s
315: learn: 1751.1362876 total: 9.15s remaining: 19.8s
316: learn: 1750.9595552 total: 9.17s remaining: 19.8s
317: learn: 1750.6982972 total: 9.2s remaining: 19.7s
318: learn: 1750.4583194 total: 9.23s remaining: 19.7s
319: learn: 1750.2995854 total: 9.25s remaining: 19.7s
320: learn: 1750.0346460 total: 9.28s remaining: 19.6s
321: learn: 1749.8055383 total: 9.31s remaining: 19.6s
322: learn: 1749.4187634 total: 9.34s remaining: 19.6s
323: learn: 1749.1792661 total: 9.36s remaining: 19.5s
324: learn: 1748.8049340 total: 9.39s remaining: 19.5s
325: learn: 1748.6236052 total: 9.42s remaining: 19.5s
326: learn: 1748.3749425 total: 9.45s remaining: 19.4s
327: learn: 1748.1794975 total: 9.47s remaining: 19.4s
328: learn: 1747.9360648 total: 9.5s remaining: 19.4s
329: learn: 1747.7196361 total: 9.53s remaining: 19.4s
330: learn: 1747.1739791 total: 9.56s remaining: 19.3s
331: learn: 1746.9583548 total: 9.58s remaining: 19.3s
332: learn: 1746.3234091 total: 9.62s remaining: 19.3s
333: learn: 1746.0112451 total: 9.64s remaining: 19.2s
334: learn: 1745.7621842 total: 9.67s remaining: 19.2s
335: learn: 1745.4706551 total: 9.71s remaining: 19.2s
336: learn: 1745.0722790 total: 9.75s remaining: 19.2s
337: learn: 1744.9388059 total: 9.78s remaining: 19.1s
338: learn: 1744.5523863 total: 9.81s remaining: 19.1s
339: learn: 1744.1700949 total: 9.84s remaining: 19.1s
340: learn: 1743.8947690 total: 9.86s remaining: 19.1s
341: learn: 1743.6025135 total: 9.88s remaining: 19s
342: learn: 1743.3779342 total: 9.92s remaining: 19s
343: learn: 1743.1297104 total: 9.95s remaining: 19s
344: learn: 1742.9431716 total: 9.99s remaining: 19s
345: learn: 1742.5938654 total: 10s remaining: 18.9s
346: learn: 1742.2808246 total: 10.1s remaining: 18.9s
347: learn: 1741.9959367 total: 10.1s remaining: 18.9s
348: learn: 1741.8208957 total: 10.1s remaining: 18.9s
349: learn: 1741.5574931 total: 10.2s remaining: 18.9s
350: learn: 1741.3508074 total: 10.2s remaining: 18.8s
351: learn: 1741.0473669 total: 10.2s remaining: 18.8s
352: learn: 1740.7527046 total: 10.2s remaining: 18.8s
353: learn: 1740.4376814 total: 10.3s remaining: 18.7s
354: learn: 1740.2260965 total: 10.3s remaining: 18.7s
355: learn: 1739.8518419 total: 10.3s remaining: 18.7s
356: learn: 1739.5107463 total: 10.3s remaining: 18.6s
357: learn: 1739.2744994 total: 10.4s remaining: 18.6s
358: learn: 1739.0320892 total: 10.4s remaining: 18.6s
359: learn: 1738.7449689 total: 10.4s remaining: 18.6s
360: learn: 1738.5872600 total: 10.5s remaining: 18.5s
361: learn: 1738.2819168 total: 10.5s remaining: 18.5s
362: learn: 1737.9732819 total: 10.5s remaining: 18.5s
363: learn: 1737.7074683 total: 10.5s remaining: 18.4s
364: learn: 1737.2512490 total: 10.6s remaining: 18.4s
365: learn: 1736.8637153 total: 10.6s remaining: 18.4s
366: learn: 1736.5370671 total: 10.6s remaining: 18.4s
367: learn: 1736.2583507 total: 10.7s remaining: 18.3s
368: learn: 1735.9664384 total: 10.7s remaining: 18.3s
369: learn: 1735.7577312 total: 10.7s remaining: 18.3s
370: learn: 1735.4378325 total: 10.8s remaining: 18.3s
371: learn: 1735.1671095 total: 10.8s remaining: 18.2s
372: learn: 1734.8602486 total: 10.8s remaining: 18.2s
373: learn: 1734.6183898 total: 10.9s remaining: 18.2s
374: learn: 1734.4011805 total: 10.9s remaining: 18.1s
375: learn: 1734.1227586 total: 10.9s remaining: 18.1s
376: learn: 1733.7815158 total: 10.9s remaining: 18.1s
377: learn: 1733.4587306 total: 11s remaining: 18.1s
378: learn: 1733.2433103 total: 11s remaining: 18s
379: learn: 1733.0199783 total: 11s remaining: 18s
380: learn: 1732.7913090 total: 11.1s remaining: 18s
381: learn: 1732.3455445 total: 11.1s remaining: 18s
382: learn: 1732.0874360 total: 11.1s remaining: 17.9s
383: learn: 1731.8234442 total: 11.2s remaining: 17.9s
384: learn: 1731.6062862 total: 11.2s remaining: 17.9s
385: learn: 1731.4504955 total: 11.2s remaining: 17.8s
386: learn: 1731.1690808 total: 11.2s remaining: 17.8s
387: learn: 1730.9958053 total: 11.3s remaining: 17.8s
388: learn: 1730.8332306 total: 11.3s remaining: 17.7s
389: learn: 1730.5708132 total: 11.3s remaining: 17.7s
390: learn: 1730.2356655 total: 11.4s remaining: 17.7s
391: learn: 1729.9734548 total: 11.4s remaining: 17.7s
392: learn: 1729.7913850 total: 11.4s remaining: 17.6s
393: learn: 1729.4887928 total: 11.4s remaining: 17.6s
394: learn: 1729.0844738 total: 11.5s remaining: 17.6s
395: learn: 1728.9537894 total: 11.5s remaining: 17.5s
396: learn: 1728.7048904 total: 11.5s remaining: 17.5s
397: learn: 1728.4320440 total: 11.6s remaining: 17.5s
398: learn: 1728.2256394 total: 11.6s remaining: 17.5s
399: learn: 1727.9186235 total: 11.6s remaining: 17.4s
400: learn: 1727.6436235 total: 11.7s remaining: 17.4s
401: learn: 1727.4169872 total: 11.7s remaining: 17.4s
402: learn: 1727.2319154 total: 11.7s remaining: 17.3s
403: learn: 1727.0121326 total: 11.7s remaining: 17.3s
404: learn: 1726.7183610 total: 11.8s remaining: 17.3s
405: learn: 1726.4290739 total: 11.8s remaining: 17.2s
406: learn: 1726.1869342 total: 11.8s remaining: 17.2s
407: learn: 1725.9129382 total: 11.8s remaining: 17.2s
408: learn: 1725.7209125 total: 11.9s remaining: 17.2s
409: learn: 1725.4603901 total: 11.9s remaining: 17.2s
410: learn: 1725.3202937 total: 11.9s remaining: 17.1s
411: learn: 1725.1309979 total: 12s remaining: 17.1s
412: learn: 1724.8196418 total: 12s remaining: 17.1s
413: learn: 1724.6208692 total: 12s remaining: 17s
414: learn: 1724.4698737 total: 12.1s remaining: 17s
415: learn: 1724.3155931 total: 12.1s remaining: 17s
416: learn: 1724.0567917 total: 12.1s remaining: 16.9s
417: learn: 1723.8357114 total: 12.1s remaining: 16.9s
418: learn: 1723.7114094 total: 12.2s remaining: 16.9s
419: learn: 1723.5496472 total: 12.2s remaining: 16.9s
420: learn: 1723.1345098 total: 12.2s remaining: 16.8s
421: learn: 1722.8461808 total: 12.3s remaining: 16.8s
422: learn: 1722.6522044 total: 12.3s remaining: 16.8s
423: learn: 1722.5369946 total: 12.3s remaining: 16.7s
424: learn: 1722.3748202 total: 12.3s remaining: 16.7s
425: learn: 1722.1303779 total: 12.4s remaining: 16.7s
426: learn: 1721.8217202 total: 12.4s remaining: 16.6s
427: learn: 1721.5906286 total: 12.4s remaining: 16.6s
428: learn: 1721.2851561 total: 12.5s remaining: 16.6s
429: learn: 1720.8295259 total: 12.5s remaining: 16.6s
430: learn: 1720.6164359 total: 12.5s remaining: 16.5s
431: learn: 1720.3283105 total: 12.6s remaining: 16.5s
432: learn: 1719.9237775 total: 12.6s remaining: 16.5s
433: learn: 1719.7620804 total: 12.6s remaining: 16.4s
434: learn: 1719.5978713 total: 12.6s remaining: 16.4s
435: learn: 1719.3842152 total: 12.7s remaining: 16.4s
436: learn: 1719.2232434 total: 12.7s remaining: 16.4s
437: learn: 1719.0019408 total: 12.7s remaining: 16.3s
438: learn: 1718.6392561 total: 12.8s remaining: 16.3s
439: learn: 1718.4295188 total: 12.8s remaining: 16.3s
440: learn: 1718.2445233 total: 12.8s remaining: 16.2s
441: learn: 1718.0999605 total: 12.8s remaining: 16.2s
442: learn: 1717.9180341 total: 12.9s remaining: 16.2s
443: learn: 1717.6577531 total: 12.9s remaining: 16.1s
444: learn: 1717.4957123 total: 12.9s remaining: 16.1s
445: learn: 1717.2824807 total: 13s remaining: 16.1s
446: learn: 1717.1734293 total: 13s remaining: 16.1s
447: learn: 1717.0997409 total: 13s remaining: 16s
448: learn: 1716.6546139 total: 13s remaining: 16s
449: learn: 1716.4635907 total: 13.1s remaining: 16s
450: learn: 1716.2512049 total: 13.1s remaining: 15.9s
451: learn: 1715.7920880 total: 13.1s remaining: 15.9s
452: learn: 1715.5239105 total: 13.2s remaining: 15.9s
453: learn: 1715.3264845 total: 13.2s remaining: 15.9s
454: learn: 1715.1536280 total: 13.2s remaining: 15.8s
455: learn: 1714.9451997 total: 13.2s remaining: 15.8s
456: learn: 1714.7188691 total: 13.3s remaining: 15.8s
457: learn: 1714.5335762 total: 13.3s remaining: 15.7s
458: learn: 1714.2417758 total: 13.3s remaining: 15.7s
459: learn: 1714.0575957 total: 13.4s remaining: 15.7s
460: learn: 1713.9067449 total: 13.4s remaining: 15.6s
461: learn: 1713.7251529 total: 13.4s remaining: 15.6s
462: learn: 1713.6329250 total: 13.4s remaining: 15.6s
463: learn: 1713.4685838 total: 13.5s remaining: 15.5s
464: learn: 1713.1377279 total: 13.5s remaining: 15.5s
465: learn: 1712.9426485 total: 13.5s remaining: 15.5s
466: learn: 1712.7144267 total: 13.5s remaining: 15.5s
467: learn: 1712.4403257 total: 13.6s remaining: 15.4s
468: learn: 1712.1955236 total: 13.6s remaining: 15.4s
469: learn: 1711.9863569 total: 13.6s remaining: 15.4s
470: learn: 1711.8146818 total: 13.6s remaining: 15.3s
471: learn: 1711.5892543 total: 13.7s remaining: 15.3s
472: learn: 1711.4275575 total: 13.7s remaining: 15.3s
473: learn: 1711.1612277 total: 13.7s remaining: 15.2s
474: learn: 1710.9839599 total: 13.8s remaining: 15.2s
475: learn: 1710.8741068 total: 13.8s remaining: 15.2s
476: learn: 1710.6589338 total: 13.8s remaining: 15.2s
477: learn: 1710.4240706 total: 13.8s remaining: 15.1s
478: learn: 1710.1560435 total: 13.9s remaining: 15.1s
479: learn: 1709.9921607 total: 13.9s remaining: 15.1s
480: learn: 1709.8490882 total: 13.9s remaining: 15s
481: learn: 1709.7311258 total: 14s remaining: 15s
482: learn: 1709.4895432 total: 14s remaining: 15s
483: learn: 1709.0884517 total: 14s remaining: 14.9s
484: learn: 1708.8016874 total: 14s remaining: 14.9s
485: learn: 1708.5850288 total: 14.1s remaining: 14.9s
486: learn: 1708.3634190 total: 14.1s remaining: 14.9s
487: learn: 1708.2242398 total: 14.1s remaining: 14.8s
488: learn: 1707.9602073 total: 14.2s remaining: 14.8s
489: learn: 1707.7367062 total: 14.2s remaining: 14.8s
490: learn: 1707.4973231 total: 14.2s remaining: 14.7s
491: learn: 1707.1760772 total: 14.2s remaining: 14.7s
492: learn: 1706.9440952 total: 14.3s remaining: 14.7s
493: learn: 1706.7974894 total: 14.3s remaining: 14.7s
494: learn: 1706.4014127 total: 14.3s remaining: 14.6s
495: learn: 1706.1859417 total: 14.4s remaining: 14.6s
496: learn: 1705.9164086 total: 14.4s remaining: 14.6s
497: learn: 1705.7013334 total: 14.4s remaining: 14.5s
498: learn: 1705.5872547 total: 14.5s remaining: 14.5s
499: learn: 1705.4497669 total: 14.5s remaining: 14.5s
500: learn: 1705.2367888 total: 14.5s remaining: 14.5s
501: learn: 1704.9701498 total: 14.5s remaining: 14.4s
502: learn: 1704.7599372 total: 14.6s remaining: 14.4s
503: learn: 1704.4875180 total: 14.6s remaining: 14.4s
504: learn: 1704.3092848 total: 14.6s remaining: 14.3s
505: learn: 1703.9293336 total: 14.6s remaining: 14.3s
506: learn: 1703.8143876 total: 14.7s remaining: 14.3s
507: learn: 1703.6710883 total: 14.7s remaining: 14.2s
508: learn: 1703.4157707 total: 14.7s remaining: 14.2s
509: learn: 1703.2956473 total: 14.8s remaining: 14.2s
510: learn: 1703.1466932 total: 14.8s remaining: 14.1s
511: learn: 1702.9149426 total: 14.8s remaining: 14.1s
512: learn: 1702.7343299 total: 14.9s remaining: 14.1s
513: learn: 1702.6193861 total: 14.9s remaining: 14.1s
514: learn: 1702.4690258 total: 14.9s remaining: 14s
515: learn: 1702.3233712 total: 14.9s remaining: 14s
516: learn: 1701.9915959 total: 15s remaining: 14s
517: learn: 1701.7287352 total: 15s remaining: 13.9s
518: learn: 1701.4654730 total: 15s remaining: 13.9s
519: learn: 1701.3491549 total: 15s remaining: 13.9s
520: learn: 1701.1247116 total: 15.1s remaining: 13.8s
521: learn: 1700.9548406 total: 15.1s remaining: 13.8s
522: learn: 1700.6687852 total: 15.1s remaining: 13.8s
523: learn: 1700.4789442 total: 15.2s remaining: 13.8s
524: learn: 1700.1771939 total: 15.2s remaining: 13.7s
525: learn: 1699.9532787 total: 15.2s remaining: 13.7s
526: learn: 1699.7881874 total: 15.2s remaining: 13.7s
527: learn: 1699.6537241 total: 15.3s remaining: 13.7s
528: learn: 1699.3310750 total: 15.3s remaining: 13.6s
529: learn: 1699.0993393 total: 15.3s remaining: 13.6s
530: learn: 1699.0392712 total: 15.3s remaining: 13.6s
531: learn: 1698.8859196 total: 15.4s remaining: 13.5s
532: learn: 1698.7663868 total: 15.4s remaining: 13.5s
533: learn: 1698.6345450 total: 15.4s remaining: 13.5s
534: learn: 1698.4363490 total: 15.5s remaining: 13.4s
535: learn: 1698.1399826 total: 15.5s remaining: 13.4s
536: learn: 1697.8343272 total: 15.5s remaining: 13.4s
537: learn: 1697.6942194 total: 15.5s remaining: 13.4s
538: learn: 1697.5777714 total: 15.6s remaining: 13.3s
539: learn: 1697.3771034 total: 15.6s remaining: 13.3s
540: learn: 1697.2139003 total: 15.6s remaining: 13.3s
541: learn: 1696.9732260 total: 15.7s remaining: 13.2s
542: learn: 1696.6663454 total: 15.7s remaining: 13.2s
543: learn: 1696.4584443 total: 15.7s remaining: 13.2s
544: learn: 1696.3300308 total: 15.8s remaining: 13.2s
545: learn: 1696.1459706 total: 15.8s remaining: 13.1s
546: learn: 1696.0292760 total: 15.8s remaining: 13.1s
547: learn: 1695.8142329 total: 15.8s remaining: 13.1s
548: learn: 1695.5343916 total: 15.9s remaining: 13s
549: learn: 1695.4013223 total: 15.9s remaining: 13s
550: learn: 1695.2973342 total: 15.9s remaining: 13s
551: learn: 1695.0914738 total: 16s remaining: 13s
552: learn: 1694.9553720 total: 16s remaining: 12.9s
553: learn: 1694.7989630 total: 16s remaining: 12.9s
554: learn: 1694.5676173 total: 16s remaining: 12.9s
555: learn: 1694.3650124 total: 16.1s remaining: 12.8s
556: learn: 1694.1690115 total: 16.1s remaining: 12.8s
557: learn: 1693.9422772 total: 16.1s remaining: 12.8s
558: learn: 1693.7942860 total: 16.2s remaining: 12.8s
559: learn: 1693.6682630 total: 16.2s remaining: 12.7s
560: learn: 1693.4982752 total: 16.2s remaining: 12.7s
561: learn: 1693.3805216 total: 16.3s remaining: 12.7s
562: learn: 1693.0483267 total: 16.3s remaining: 12.6s
563: learn: 1692.7784317 total: 16.3s remaining: 12.6s
564: learn: 1692.5272861 total: 16.3s remaining: 12.6s
565: learn: 1692.3072137 total: 16.4s remaining: 12.6s
566: learn: 1692.0689559 total: 16.4s remaining: 12.5s
567: learn: 1691.8829497 total: 16.4s remaining: 12.5s
568: learn: 1691.6567784 total: 16.5s remaining: 12.5s
569: learn: 1691.4518368 total: 16.5s remaining: 12.4s
570: learn: 1691.3116370 total: 16.5s remaining: 12.4s
571: learn: 1691.2298872 total: 16.5s remaining: 12.4s
572: learn: 1691.0800758 total: 16.6s remaining: 12.3s
573: learn: 1690.9613812 total: 16.6s remaining: 12.3s
574: learn: 1690.8424564 total: 16.6s remaining: 12.3s
575: learn: 1690.6983461 total: 16.6s remaining: 12.2s
576: learn: 1690.6315348 total: 16.7s remaining: 12.2s
577: learn: 1690.5542321 total: 16.7s remaining: 12.2s
578: learn: 1690.3116101 total: 16.7s remaining: 12.2s
579: learn: 1690.0861418 total: 16.7s remaining: 12.1s
580: learn: 1689.9615215 total: 16.8s remaining: 12.1s
581: learn: 1689.6233299 total: 16.8s remaining: 12.1s
582: learn: 1689.4918648 total: 16.8s remaining: 12s
583: learn: 1689.3414152 total: 16.9s remaining: 12s
584: learn: 1689.0787859 total: 16.9s remaining: 12s
585: learn: 1688.9113029 total: 16.9s remaining: 11.9s
586: learn: 1688.7586642 total: 16.9s remaining: 11.9s
587: learn: 1688.5585843 total: 17s remaining: 11.9s
588: learn: 1688.3361426 total: 17s remaining: 11.9s
589: learn: 1688.1268731 total: 17s remaining: 11.8s
590: learn: 1687.9854899 total: 17s remaining: 11.8s
591: learn: 1687.8229089 total: 17.1s remaining: 11.8s
592: learn: 1687.5796256 total: 17.1s remaining: 11.7s
593: learn: 1687.3118422 total: 17.1s remaining: 11.7s
594: learn: 1687.1253712 total: 17.2s remaining: 11.7s
595: learn: 1686.8596715 total: 17.2s remaining: 11.7s
596: learn: 1686.6012383 total: 17.2s remaining: 11.6s
597: learn: 1686.3079411 total: 17.2s remaining: 11.6s
598: learn: 1685.9858211 total: 17.3s remaining: 11.6s
599: learn: 1685.7613338 total: 17.3s remaining: 11.5s
600: learn: 1685.6398753 total: 17.3s remaining: 11.5s
601: learn: 1685.5455856 total: 17.3s remaining: 11.5s
602: learn: 1685.4045259 total: 17.4s remaining: 11.4s
603: learn: 1685.2296047 total: 17.4s remaining: 11.4s
604: learn: 1685.0222226 total: 17.4s remaining: 11.4s
605: learn: 1684.7894045 total: 17.5s remaining: 11.3s
606: learn: 1684.5902773 total: 17.5s remaining: 11.3s
607: learn: 1684.4308779 total: 17.5s remaining: 11.3s
608: learn: 1684.3071727 total: 17.5s remaining: 11.3s
609: learn: 1684.1399471 total: 17.6s remaining: 11.2s
610: learn: 1684.0359694 total: 17.6s remaining: 11.2s
611: learn: 1683.9159226 total: 17.6s remaining: 11.2s
612: learn: 1683.7673159 total: 17.6s remaining: 11.1s
613: learn: 1683.6508210 total: 17.7s remaining: 11.1s
614: learn: 1683.4977619 total: 17.7s remaining: 11.1s
615: learn: 1683.4215152 total: 17.7s remaining: 11s
616: learn: 1683.2737958 total: 17.8s remaining: 11s
617: learn: 1683.1073463 total: 17.8s remaining: 11s
618: learn: 1682.9982313 total: 17.8s remaining: 11s
619: learn: 1682.7628859 total: 17.8s remaining: 10.9s
620: learn: 1682.5925102 total: 17.9s remaining: 10.9s
621: learn: 1682.4460951 total: 17.9s remaining: 10.9s
622: learn: 1682.3004735 total: 17.9s remaining: 10.8s
623: learn: 1682.0879791 total: 18s remaining: 10.8s
624: learn: 1681.9803428 total: 18s remaining: 10.8s
625: learn: 1681.7414593 total: 18s remaining: 10.8s
626: learn: 1681.6471646 total: 18s remaining: 10.7s
627: learn: 1681.5215978 total: 18.1s remaining: 10.7s
628: learn: 1681.3817904 total: 18.1s remaining: 10.7s
629: learn: 1681.2404126 total: 18.1s remaining: 10.6s
630: learn: 1681.0759402 total: 18.2s remaining: 10.6s
631: learn: 1680.8388830 total: 18.2s remaining: 10.6s
632: learn: 1680.7975697 total: 18.2s remaining: 10.6s
633: learn: 1680.6330024 total: 18.2s remaining: 10.5s
634: learn: 1680.5250434 total: 18.3s remaining: 10.5s
635: learn: 1680.1506942 total: 18.3s remaining: 10.5s
636: learn: 1680.0220771 total: 18.3s remaining: 10.4s
637: learn: 1679.8489432 total: 18.4s remaining: 10.4s
638: learn: 1679.6929813 total: 18.4s remaining: 10.4s
639: learn: 1679.5882470 total: 18.4s remaining: 10.4s
640: learn: 1679.4287919 total: 18.4s remaining: 10.3s
641: learn: 1679.2512083 total: 18.5s remaining: 10.3s
642: learn: 1679.1207468 total: 18.5s remaining: 10.3s
643: learn: 1679.0018421 total: 18.5s remaining: 10.2s
644: learn: 1678.7867782 total: 18.6s remaining: 10.2s
645: learn: 1678.5869061 total: 18.6s remaining: 10.2s
646: learn: 1678.4757296 total: 18.6s remaining: 10.2s
647: learn: 1678.3162349 total: 18.6s remaining: 10.1s
648: learn: 1678.2230216 total: 18.7s remaining: 10.1s
649: learn: 1678.0980247 total: 18.7s remaining: 10.1s
650: learn: 1677.9520409 total: 18.7s remaining: 10s
651: learn: 1677.7827492 total: 18.8s remaining: 10s
652: learn: 1677.6666682 total: 18.8s remaining: 9.99s
653: learn: 1677.5694224 total: 18.8s remaining: 9.96s
654: learn: 1677.4430978 total: 18.8s remaining: 9.93s
655: learn: 1677.3689433 total: 18.9s remaining: 9.9s
656: learn: 1677.1799164 total: 18.9s remaining: 9.87s
657: learn: 1677.0993359 total: 18.9s remaining: 9.84s
658: learn: 1676.9483349 total: 19s remaining: 9.81s
659: learn: 1676.7887829 total: 19s remaining: 9.78s
660: learn: 1676.7274584 total: 19s remaining: 9.75s
661: learn: 1676.5851743 total: 19s remaining: 9.72s
662: learn: 1676.5355314 total: 19.1s remaining: 9.69s
663: learn: 1676.4263949 total: 19.1s remaining: 9.66s
664: learn: 1676.1976133 total: 19.1s remaining: 9.63s
665: learn: 1676.0533986 total: 19.2s remaining: 9.6s
666: learn: 1675.9094629 total: 19.2s remaining: 9.57s
667: learn: 1675.7211894 total: 19.2s remaining: 9.54s
668: learn: 1675.5670463 total: 19.2s remaining: 9.51s
669: learn: 1675.3222778 total: 19.3s remaining: 9.49s
670: learn: 1675.2348452 total: 19.3s remaining: 9.46s
671: learn: 1675.1512748 total: 19.3s remaining: 9.43s
672: learn: 1675.0473159 total: 19.4s remaining: 9.4s
673: learn: 1674.9182261 total: 19.4s remaining: 9.38s
674: learn: 1674.8477472 total: 19.4s remaining: 9.35s
675: learn: 1674.7652863 total: 19.4s remaining: 9.32s
676: learn: 1674.5484231 total: 19.5s remaining: 9.29s
677: learn: 1674.4416227 total: 19.5s remaining: 9.26s
678: learn: 1674.3083815 total: 19.5s remaining: 9.24s
679: learn: 1674.1963886 total: 19.6s remaining: 9.21s
680: learn: 1674.0686333 total: 19.6s remaining: 9.18s
681: learn: 1673.9288755 total: 19.6s remaining: 9.16s
682: learn: 1673.8050401 total: 19.7s remaining: 9.13s
683: learn: 1673.6514292 total: 19.7s remaining: 9.1s
684: learn: 1673.4860633 total: 19.7s remaining: 9.07s
685: learn: 1673.3801088 total: 19.8s remaining: 9.04s
686: learn: 1673.2668741 total: 19.8s remaining: 9.01s
687: learn: 1673.1320566 total: 19.8s remaining: 8.98s
688: learn: 1672.9242312 total: 19.8s remaining: 8.96s
689: learn: 1672.7783689 total: 19.9s remaining: 8.93s
690: learn: 1672.4485632 total: 19.9s remaining: 8.9s
691: learn: 1672.1944329 total: 19.9s remaining: 8.87s
692: learn: 1672.0744131 total: 20s remaining: 8.84s
693: learn: 1671.9306390 total: 20s remaining: 8.81s
694: learn: 1671.8273277 total: 20s remaining: 8.78s
695: learn: 1671.7406952 total: 20s remaining: 8.75s
696: learn: 1671.6277956 total: 20.1s remaining: 8.72s
697: learn: 1671.5190435 total: 20.1s remaining: 8.69s
698: learn: 1671.3293064 total: 20.1s remaining: 8.67s
699: learn: 1671.1395288 total: 20.2s remaining: 8.64s
700: learn: 1671.0305570 total: 20.2s remaining: 8.61s
701: learn: 1670.8830534 total: 20.2s remaining: 8.58s
702: learn: 1670.6987243 total: 20.2s remaining: 8.55s
703: learn: 1670.5264775 total: 20.3s remaining: 8.52s
704: learn: 1670.3736131 total: 20.3s remaining: 8.49s
705: learn: 1670.2284878 total: 20.3s remaining: 8.46s
706: learn: 1670.0830671 total: 20.4s remaining: 8.43s
707: learn: 1669.9169052 total: 20.4s remaining: 8.4s
708: learn: 1669.7214450 total: 20.4s remaining: 8.38s
709: learn: 1669.5088222 total: 20.4s remaining: 8.35s
710: learn: 1669.2480764 total: 20.5s remaining: 8.32s
711: learn: 1669.0603715 total: 20.5s remaining: 8.29s
712: learn: 1668.8969739 total: 20.5s remaining: 8.26s
713: learn: 1668.6829470 total: 20.5s remaining: 8.23s
714: learn: 1668.5752067 total: 20.6s remaining: 8.2s
715: learn: 1668.3884092 total: 20.6s remaining: 8.17s
716: learn: 1668.1975212 total: 20.6s remaining: 8.14s
717: learn: 1668.0154505 total: 20.7s remaining: 8.11s
718: learn: 1667.9175926 total: 20.7s remaining: 8.08s
719: learn: 1667.8238627 total: 20.7s remaining: 8.05s
720: learn: 1667.7312796 total: 20.7s remaining: 8.02s
721: learn: 1667.6126765 total: 20.8s remaining: 7.99s
722: learn: 1667.3937945 total: 20.8s remaining: 7.97s
723: learn: 1667.1127097 total: 20.8s remaining: 7.94s
724: learn: 1666.9495735 total: 20.8s remaining: 7.91s
725: learn: 1666.8083724 total: 20.9s remaining: 7.88s
726: learn: 1666.6817798 total: 20.9s remaining: 7.85s
727: learn: 1666.5707962 total: 20.9s remaining: 7.82s
728: learn: 1666.4429256 total: 20.9s remaining: 7.79s
729: learn: 1666.3242118 total: 21s remaining: 7.76s
730: learn: 1666.1656276 total: 21s remaining: 7.73s
731: learn: 1666.0032168 total: 21s remaining: 7.7s
732: learn: 1665.9098690 total: 21.1s remaining: 7.67s
733: learn: 1665.7050392 total: 21.1s remaining: 7.64s
734: learn: 1665.5150651 total: 21.1s remaining: 7.61s
735: learn: 1665.2716827 total: 21.1s remaining: 7.58s
736: learn: 1665.1770778 total: 21.2s remaining: 7.55s
737: learn: 1664.9812968 total: 21.2s remaining: 7.53s
738: learn: 1664.7602800 total: 21.2s remaining: 7.5s
739: learn: 1664.5857007 total: 21.3s remaining: 7.47s
740: learn: 1664.4995463 total: 21.3s remaining: 7.44s
741: learn: 1664.3400607 total: 21.3s remaining: 7.41s
742: learn: 1664.1186782 total: 21.3s remaining: 7.38s
743: learn: 1663.9704859 total: 21.4s remaining: 7.35s
744: learn: 1663.8010351 total: 21.4s remaining: 7.32s
745: learn: 1663.6506792 total: 21.4s remaining: 7.29s
746: learn: 1663.4934007 total: 21.4s remaining: 7.26s
747: learn: 1663.3464955 total: 21.5s remaining: 7.23s
748: learn: 1663.1735558 total: 21.5s remaining: 7.21s
749: learn: 1663.0615475 total: 21.5s remaining: 7.17s
750: learn: 1662.9499940 total: 21.6s remaining: 7.14s
751: learn: 1662.7739172 total: 21.6s remaining: 7.12s
752: learn: 1662.6127146 total: 21.6s remaining: 7.09s
753: learn: 1662.4772361 total: 21.6s remaining: 7.06s
754: learn: 1662.3319876 total: 21.7s remaining: 7.03s
755: learn: 1662.1768739 total: 21.7s remaining: 7s
756: learn: 1662.0959500 total: 21.7s remaining: 6.97s
757: learn: 1662.0016278 total: 21.7s remaining: 6.94s
758: learn: 1661.8932123 total: 21.8s remaining: 6.91s
759: learn: 1661.7286823 total: 21.8s remaining: 6.88s
760: learn: 1661.4308160 total: 21.8s remaining: 6.85s
761: learn: 1661.2244930 total: 21.8s remaining: 6.82s
762: learn: 1661.0430265 total: 21.9s remaining: 6.8s
763: learn: 1660.9016803 total: 21.9s remaining: 6.77s
764: learn: 1660.7519186 total: 21.9s remaining: 6.74s
765: learn: 1660.6919924 total: 22s remaining: 6.71s
766: learn: 1660.6510818 total: 22s remaining: 6.68s
767: learn: 1660.5238766 total: 22s remaining: 6.65s
768: learn: 1660.2959578 total: 22s remaining: 6.62s
769: learn: 1660.1977078 total: 22.1s remaining: 6.59s
770: learn: 1660.0682231 total: 22.1s remaining: 6.56s
771: learn: 1660.0250200 total: 22.1s remaining: 6.53s
772: learn: 1659.7939417 total: 22.2s remaining: 6.5s
773: learn: 1659.6785231 total: 22.2s remaining: 6.47s
774: learn: 1659.6154814 total: 22.2s remaining: 6.45s
775: learn: 1659.5016007 total: 22.2s remaining: 6.42s
776: learn: 1659.3840846 total: 22.3s remaining: 6.39s
777: learn: 1659.2215946 total: 22.3s remaining: 6.36s
778: learn: 1659.1048202 total: 22.3s remaining: 6.33s
779: learn: 1659.0272619 total: 22.3s remaining: 6.3s
780: learn: 1658.9368641 total: 22.4s remaining: 6.27s
781: learn: 1658.7297152 total: 22.4s remaining: 6.24s
782: learn: 1658.6284756 total: 22.4s remaining: 6.21s
783: learn: 1658.5328595 total: 22.5s remaining: 6.19s
784: learn: 1658.4699870 total: 22.5s remaining: 6.16s
785: learn: 1658.2520911 total: 22.5s remaining: 6.13s
786: learn: 1658.1544988 total: 22.5s remaining: 6.1s
787: learn: 1658.0614611 total: 22.6s remaining: 6.07s
788: learn: 1657.9651399 total: 22.6s remaining: 6.04s
789: learn: 1657.9097966 total: 22.6s remaining: 6.01s
790: learn: 1657.8577004 total: 22.6s remaining: 5.98s
791: learn: 1657.7055601 total: 22.7s remaining: 5.95s
792: learn: 1657.6229137 total: 22.7s remaining: 5.92s
793: learn: 1657.5310572 total: 22.7s remaining: 5.89s
794: learn: 1657.4033092 total: 22.7s remaining: 5.87s
795: learn: 1657.2210777 total: 22.8s remaining: 5.84s
796: learn: 1657.0554759 total: 22.8s remaining: 5.81s
797: learn: 1656.9314139 total: 22.8s remaining: 5.78s
798: learn: 1656.7801125 total: 22.9s remaining: 5.75s
799: learn: 1656.6828771 total: 22.9s remaining: 5.72s
800: learn: 1656.6096840 total: 22.9s remaining: 5.69s
801: learn: 1656.4998164 total: 22.9s remaining: 5.67s
802: learn: 1656.3610308 total: 23s remaining: 5.64s
803: learn: 1656.2376654 total: 23s remaining: 5.61s
804: learn: 1656.0039753 total: 23s remaining: 5.58s
805: learn: 1655.9022811 total: 23.1s remaining: 5.55s
806: learn: 1655.8402089 total: 23.1s remaining: 5.52s
807: learn: 1655.7522931 total: 23.1s remaining: 5.49s
808: learn: 1655.6101223 total: 23.1s remaining: 5.46s
809: learn: 1655.3613385 total: 23.2s remaining: 5.44s
810: learn: 1655.2796242 total: 23.2s remaining: 5.41s
811: learn: 1655.1841729 total: 23.2s remaining: 5.38s
812: learn: 1655.0948238 total: 23.3s remaining: 5.35s
813: learn: 1655.0391445 total: 23.3s remaining: 5.32s
814: learn: 1654.9420823 total: 23.3s remaining: 5.29s
815: learn: 1654.7717133 total: 23.3s remaining: 5.26s
816: learn: 1654.6516492 total: 23.4s remaining: 5.24s
817: learn: 1654.5292150 total: 23.4s remaining: 5.21s
818: learn: 1654.3562520 total: 23.4s remaining: 5.18s
819: learn: 1654.2280109 total: 23.5s remaining: 5.15s
820: learn: 1654.0289015 total: 23.5s remaining: 5.12s
821: learn: 1653.9738142 total: 23.5s remaining: 5.09s
822: learn: 1653.8215737 total: 23.5s remaining: 5.06s
823: learn: 1653.6768895 total: 23.6s remaining: 5.03s
824: learn: 1653.5871523 total: 23.6s remaining: 5.01s
825: learn: 1653.4787846 total: 23.6s remaining: 4.98s
826: learn: 1653.3452465 total: 23.7s remaining: 4.95s
827: learn: 1653.2525868 total: 23.7s remaining: 4.92s
828: learn: 1653.1923936 total: 23.7s remaining: 4.89s
829: learn: 1653.0449818 total: 23.7s remaining: 4.86s
830: learn: 1652.9810095 total: 23.8s remaining: 4.83s
831: learn: 1652.8423291 total: 23.8s remaining: 4.8s
832: learn: 1652.7379262 total: 23.8s remaining: 4.77s
833: learn: 1652.6850798 total: 23.8s remaining: 4.74s
834: learn: 1652.4922296 total: 23.9s remaining: 4.71s
835: learn: 1652.3671133 total: 23.9s remaining: 4.69s
836: learn: 1652.2230224 total: 23.9s remaining: 4.66s
837: learn: 1652.1282818 total: 23.9s remaining: 4.63s
838: learn: 1652.0192074 total: 24s remaining: 4.6s
839: learn: 1651.9212143 total: 24s remaining: 4.58s
840: learn: 1651.8046949 total: 24.1s remaining: 4.55s
841: learn: 1651.6124318 total: 24.1s remaining: 4.52s
842: learn: 1651.3732941 total: 24.1s remaining: 4.49s
843: learn: 1651.1958455 total: 24.1s remaining: 4.46s
844: learn: 1651.0054488 total: 24.2s remaining: 4.43s
845: learn: 1650.8539152 total: 24.2s remaining: 4.41s
846: learn: 1650.8095401 total: 24.2s remaining: 4.38s
847: learn: 1650.7470724 total: 24.3s remaining: 4.35s
848: learn: 1650.6077480 total: 24.3s remaining: 4.32s
849: learn: 1650.4595230 total: 24.3s remaining: 4.29s
850: learn: 1650.3111246 total: 24.3s remaining: 4.26s
851: learn: 1650.1873670 total: 24.4s remaining: 4.23s
852: learn: 1650.1517335 total: 24.4s remaining: 4.21s
853: learn: 1649.9912513 total: 24.4s remaining: 4.18s
854: learn: 1649.8504413 total: 24.5s remaining: 4.15s
855: learn: 1649.7403460 total: 24.5s remaining: 4.12s
856: learn: 1649.6081364 total: 24.5s remaining: 4.09s
857: learn: 1649.5319515 total: 24.5s remaining: 4.06s
858: learn: 1649.4020825 total: 24.6s remaining: 4.03s
859: learn: 1649.2566188 total: 24.6s remaining: 4s
860: learn: 1649.1639681 total: 24.6s remaining: 3.98s
861: learn: 1649.0251452 total: 24.7s remaining: 3.95s
862: learn: 1648.9422879 total: 24.7s remaining: 3.92s
863: learn: 1648.8211021 total: 24.7s remaining: 3.89s
864: learn: 1648.8046717 total: 24.7s remaining: 3.86s
865: learn: 1648.7135175 total: 24.8s remaining: 3.83s
866: learn: 1648.6443067 total: 24.8s remaining: 3.8s
867: learn: 1648.5101293 total: 24.8s remaining: 3.77s
868: learn: 1648.3983292 total: 24.9s remaining: 3.75s
869: learn: 1648.2317388 total: 24.9s remaining: 3.72s
870: learn: 1648.1411887 total: 24.9s remaining: 3.69s
871: learn: 1648.0433010 total: 24.9s remaining: 3.66s
872: learn: 1647.8772892 total: 25s remaining: 3.63s
873: learn: 1647.7283231 total: 25s remaining: 3.6s
874: learn: 1647.5961144 total: 25s remaining: 3.57s
875: learn: 1647.5271704 total: 25s remaining: 3.54s
876: learn: 1647.3542984 total: 25.1s remaining: 3.52s
877: learn: 1647.2702359 total: 25.1s remaining: 3.49s
878: learn: 1647.1238586 total: 25.1s remaining: 3.46s
879: learn: 1647.0061259 total: 25.2s remaining: 3.43s
880: learn: 1646.8935452 total: 25.2s remaining: 3.4s
881: learn: 1646.7690537 total: 25.2s remaining: 3.37s
882: learn: 1646.6273755 total: 25.2s remaining: 3.34s
883: learn: 1646.5229796 total: 25.3s remaining: 3.31s
884: learn: 1646.4186191 total: 25.3s remaining: 3.29s
885: learn: 1646.3182380 total: 25.3s remaining: 3.26s
886: learn: 1646.1824141 total: 25.4s remaining: 3.23s
887: learn: 1646.0448873 total: 25.4s remaining: 3.2s
888: learn: 1645.9380891 total: 25.4s remaining: 3.17s
889: learn: 1645.8339487 total: 25.4s remaining: 3.14s
890: learn: 1645.7308235 total: 25.5s remaining: 3.11s
891: learn: 1645.6432993 total: 25.5s remaining: 3.08s
892: learn: 1645.5120988 total: 25.5s remaining: 3.06s
893: learn: 1645.3985019 total: 25.5s remaining: 3.03s
894: learn: 1645.2658314 total: 25.6s remaining: 3s
895: learn: 1645.2081591 total: 25.6s remaining: 2.97s
896: learn: 1645.1313628 total: 25.6s remaining: 2.94s
897: learn: 1645.0632011 total: 25.7s remaining: 2.91s
898: learn: 1644.9224691 total: 25.7s remaining: 2.88s
899: learn: 1644.9100702 total: 25.7s remaining: 2.85s
900: learn: 1644.7971720 total: 25.7s remaining: 2.83s
901: learn: 1644.7180427 total: 25.8s remaining: 2.8s
902: learn: 1644.5388766 total: 25.8s remaining: 2.77s
903: learn: 1644.5272925 total: 25.8s remaining: 2.74s
904: learn: 1644.4639469 total: 25.8s remaining: 2.71s
905: learn: 1644.3768114 total: 25.9s remaining: 2.68s
906: learn: 1644.2328611 total: 25.9s remaining: 2.65s
907: learn: 1644.1653848 total: 25.9s remaining: 2.63s
908: learn: 1644.0272680 total: 26s remaining: 2.6s
909: learn: 1643.8155521 total: 26s remaining: 2.57s
910: learn: 1643.7488935 total: 26s remaining: 2.54s
911: learn: 1643.6852212 total: 26s remaining: 2.51s
912: learn: 1643.5467300 total: 26.1s remaining: 2.48s
913: learn: 1643.4063965 total: 26.1s remaining: 2.46s
914: learn: 1643.2820454 total: 26.1s remaining: 2.43s
915: learn: 1643.0413616 total: 26.2s remaining: 2.4s
916: learn: 1642.9500976 total: 26.2s remaining: 2.37s
917: learn: 1642.7840687 total: 26.2s remaining: 2.34s
918: learn: 1642.6040391 total: 26.3s remaining: 2.31s
919: learn: 1642.3680842 total: 26.3s remaining: 2.28s
920: learn: 1642.2624851 total: 26.3s remaining: 2.26s
921: learn: 1642.1634153 total: 26.3s remaining: 2.23s
922: learn: 1642.0564702 total: 26.4s remaining: 2.2s
923: learn: 1641.9233020 total: 26.4s remaining: 2.17s
924: learn: 1641.8500592 total: 26.4s remaining: 2.14s
925: learn: 1641.6778145 total: 26.4s remaining: 2.11s
926: learn: 1641.5398697 total: 26.5s remaining: 2.08s
927: learn: 1641.3496087 total: 26.5s remaining: 2.06s
928: learn: 1641.2698067 total: 26.5s remaining: 2.03s
929: learn: 1641.0578916 total: 26.6s remaining: 2s
930: learn: 1640.9868132 total: 26.6s remaining: 1.97s
931: learn: 1640.8794217 total: 26.6s remaining: 1.94s
932: learn: 1640.6992439 total: 26.6s remaining: 1.91s
933: learn: 1640.5252184 total: 26.7s remaining: 1.88s
934: learn: 1640.3981960 total: 26.7s remaining: 1.85s
935: learn: 1640.3671521 total: 26.7s remaining: 1.83s
936: learn: 1640.2999775 total: 26.7s remaining: 1.8s
937: learn: 1640.1740821 total: 26.8s remaining: 1.77s
938: learn: 1640.0686947 total: 26.8s remaining: 1.74s
939: learn: 1639.9067910 total: 26.8s remaining: 1.71s
940: learn: 1639.8249176 total: 26.9s remaining: 1.68s
941: learn: 1639.7263740 total: 26.9s remaining: 1.66s
942: learn: 1639.6118317 total: 26.9s remaining: 1.63s
943: learn: 1639.5816395 total: 26.9s remaining: 1.6s
944: learn: 1639.4013553 total: 27s remaining: 1.57s
945: learn: 1639.3433323 total: 27s remaining: 1.54s
946: learn: 1639.2084774 total: 27s remaining: 1.51s
947: learn: 1639.1270864 total: 27s remaining: 1.48s
948: learn: 1639.0525360 total: 27.1s remaining: 1.46s
949: learn: 1638.8334582 total: 27.1s remaining: 1.43s
950: learn: 1638.7638432 total: 27.1s remaining: 1.4s
951: learn: 1638.7119385 total: 27.2s remaining: 1.37s
952: learn: 1638.5602705 total: 27.2s remaining: 1.34s
953: learn: 1638.4790554 total: 27.2s remaining: 1.31s
954: learn: 1638.3943231 total: 27.3s remaining: 1.28s
955: learn: 1638.2598791 total: 27.3s remaining: 1.26s
956: learn: 1638.1184469 total: 27.3s remaining: 1.23s
957: learn: 1637.9632488 total: 27.3s remaining: 1.2s
958: learn: 1637.8286358 total: 27.4s remaining: 1.17s
959: learn: 1637.7146589 total: 27.4s remaining: 1.14s
960: learn: 1637.6139231 total: 27.4s remaining: 1.11s
961: learn: 1637.4658283 total: 27.5s remaining: 1.08s
962: learn: 1637.4151195 total: 27.5s remaining: 1.06s
963: learn: 1637.2397940 total: 27.5s remaining: 1.03s
964: learn: 1637.1582140 total: 27.6s remaining: 1000ms
965: learn: 1637.0566308 total: 27.6s remaining: 971ms
966: learn: 1636.9301577 total: 27.6s remaining: 942ms
967: learn: 1636.7611066 total: 27.6s remaining: 914ms
968: learn: 1636.6657628 total: 27.7s remaining: 885ms
969: learn: 1636.5637319 total: 27.7s remaining: 857ms
970: learn: 1636.4414491 total: 27.7s remaining: 828ms
971: learn: 1636.3135391 total: 27.8s remaining: 800ms
972: learn: 1636.1741379 total: 27.8s remaining: 771ms
973: learn: 1636.0254276 total: 27.8s remaining: 743ms
974: learn: 1635.9520820 total: 27.8s remaining: 714ms
975: learn: 1635.8568370 total: 27.9s remaining: 685ms
976: learn: 1635.7432587 total: 27.9s remaining: 657ms
977: learn: 1635.5604068 total: 27.9s remaining: 628ms
978: learn: 1635.4700851 total: 28s remaining: 600ms
979: learn: 1635.3268445 total: 28s remaining: 571ms
980: learn: 1635.1642479 total: 28s remaining: 543ms
981: learn: 1635.1005484 total: 28.1s remaining: 514ms
982: learn: 1634.9926400 total: 28.1s remaining: 486ms
983: learn: 1634.8529272 total: 28.1s remaining: 457ms
984: learn: 1634.7574782 total: 28.1s remaining: 428ms
985: learn: 1634.6540572 total: 28.2s remaining: 400ms
986: learn: 1634.5880965 total: 28.2s remaining: 371ms
987: learn: 1634.5139955 total: 28.2s remaining: 343ms
988: learn: 1634.4101834 total: 28.2s remaining: 314ms
989: learn: 1634.2461516 total: 28.3s remaining: 286ms
990: learn: 1634.0824664 total: 28.3s remaining: 257ms
991: learn: 1633.9258054 total: 28.3s remaining: 229ms
992: learn: 1633.8385085 total: 28.4s remaining: 200ms
993: learn: 1633.7259623 total: 28.4s remaining: 171ms
994: learn: 1633.6412548 total: 28.4s remaining: 143ms
995: learn: 1633.5419805 total: 28.5s remaining: 114ms
996: learn: 1633.4029582 total: 28.5s remaining: 85.7ms
997: learn: 1633.2919003 total: 28.5s remaining: 57.1ms
998: learn: 1633.1739968 total: 28.5s remaining: 28.6ms
999: learn: 1633.0554469 total: 28.6s remaining: 0us
Learning rate set to 0.093467
0: learn: 4286.2963472 total: 36.8ms remaining: 36.8s
1: learn: 4036.6503016 total: 65.1ms remaining: 32.5s
2: learn: 3812.9422202 total: 103ms remaining: 34.1s
3: learn: 3620.0030793 total: 132ms remaining: 32.9s
4: learn: 3442.6177429 total: 162ms remaining: 32.3s
5: learn: 3283.4369511 total: 200ms remaining: 33.1s
6: learn: 3143.3229318 total: 227ms remaining: 32.2s
7: learn: 3021.7701886 total: 256ms remaining: 31.7s
8: learn: 2908.5116606 total: 294ms remaining: 32.3s
9: learn: 2812.3626973 total: 322ms remaining: 31.9s
10: learn: 2728.0689491 total: 348ms remaining: 31.3s
11: learn: 2650.6120219 total: 381ms remaining: 31.4s
12: learn: 2582.4712481 total: 414ms remaining: 31.4s
13: learn: 2526.2007732 total: 441ms remaining: 31s
14: learn: 2470.5534876 total: 469ms remaining: 30.8s
15: learn: 2422.8220813 total: 503ms remaining: 30.9s
16: learn: 2380.0190634 total: 530ms remaining: 30.6s
17: learn: 2341.0719449 total: 555ms remaining: 30.3s
18: learn: 2305.3245378 total: 595ms remaining: 30.7s
19: learn: 2275.0455954 total: 622ms remaining: 30.5s
20: learn: 2248.8313999 total: 657ms remaining: 30.6s
21: learn: 2225.0686803 total: 695ms remaining: 30.9s
22: learn: 2203.4480799 total: 731ms remaining: 31s
23: learn: 2184.4473249 total: 763ms remaining: 31s
24: learn: 2166.1706142 total: 796ms remaining: 31s
25: learn: 2149.5577846 total: 823ms remaining: 30.8s
26: learn: 2135.0000015 total: 849ms remaining: 30.6s
27: learn: 2120.9283617 total: 885ms remaining: 30.7s
28: learn: 2109.2313610 total: 912ms remaining: 30.5s
29: learn: 2098.3210376 total: 938ms remaining: 30.3s
30: learn: 2088.6916358 total: 975ms remaining: 30.5s
31: learn: 2079.5111483 total: 1s remaining: 30.3s
32: learn: 2072.0270422 total: 1.03s remaining: 30.2s
33: learn: 2063.8298057 total: 1.06s remaining: 30.2s
34: learn: 2057.8169220 total: 1.09s remaining: 30.1s
35: learn: 2051.0643488 total: 1.12s remaining: 29.9s
36: learn: 2044.6288999 total: 1.14s remaining: 29.8s
37: learn: 2036.9139392 total: 1.18s remaining: 29.8s
38: learn: 2030.7820980 total: 1.21s remaining: 29.7s
39: learn: 2026.4671567 total: 1.23s remaining: 29.5s
40: learn: 2019.7882736 total: 1.27s remaining: 29.6s
41: learn: 2012.5930679 total: 1.29s remaining: 29.6s
42: learn: 2005.9061379 total: 1.32s remaining: 29.5s
43: learn: 2001.5569581 total: 1.36s remaining: 29.5s
44: learn: 1997.6537665 total: 1.38s remaining: 29.4s
45: learn: 1992.8079354 total: 1.41s remaining: 29.3s
46: learn: 1989.2616813 total: 1.44s remaining: 29.2s
47: learn: 1986.0175741 total: 1.47s remaining: 29.2s
48: learn: 1983.1188189 total: 1.5s remaining: 29s
49: learn: 1978.8497332 total: 1.52s remaining: 28.9s
50: learn: 1975.8992157 total: 1.56s remaining: 29s
51: learn: 1972.4918473 total: 1.58s remaining: 28.9s
52: learn: 1969.3280105 total: 1.61s remaining: 28.8s
53: learn: 1964.9972642 total: 1.64s remaining: 28.7s
54: learn: 1962.5343329 total: 1.67s remaining: 28.7s
55: learn: 1960.2508175 total: 1.7s remaining: 28.6s
56: learn: 1957.9752386 total: 1.72s remaining: 28.5s
57: learn: 1954.9175751 total: 1.75s remaining: 28.5s
58: learn: 1953.0660339 total: 1.78s remaining: 28.4s
59: learn: 1949.3706673 total: 1.8s remaining: 28.3s
60: learn: 1945.7621943 total: 1.84s remaining: 28.3s
61: learn: 1943.3102550 total: 1.87s remaining: 28.3s
62: learn: 1940.6730784 total: 1.9s remaining: 28.2s
63: learn: 1938.5117067 total: 1.92s remaining: 28.1s
64: learn: 1936.4581791 total: 1.96s remaining: 28.2s
65: learn: 1934.4846191 total: 1.98s remaining: 28.1s
66: learn: 1931.3364431 total: 2.01s remaining: 28s
67: learn: 1928.8436494 total: 2.04s remaining: 28s
68: learn: 1927.3813821 total: 2.07s remaining: 27.9s
69: learn: 1924.7993987 total: 2.09s remaining: 27.8s
70: learn: 1923.2840601 total: 2.12s remaining: 27.7s
71: learn: 1921.6393696 total: 2.15s remaining: 27.7s
72: learn: 1919.8228560 total: 2.18s remaining: 27.7s
73: learn: 1918.9547041 total: 2.2s remaining: 27.6s
74: learn: 1915.7386754 total: 2.24s remaining: 27.6s
75: learn: 1914.3318590 total: 2.26s remaining: 27.5s
76: learn: 1912.1855433 total: 2.29s remaining: 27.4s
77: learn: 1910.8454424 total: 2.32s remaining: 27.4s
78: learn: 1909.0825581 total: 2.35s remaining: 27.4s
79: learn: 1907.6983012 total: 2.37s remaining: 27.3s
80: learn: 1906.4969324 total: 2.4s remaining: 27.3s
81: learn: 1904.6674020 total: 2.43s remaining: 27.2s
82: learn: 1902.6025324 total: 2.46s remaining: 27.2s
83: learn: 1900.5717529 total: 2.49s remaining: 27.1s
84: learn: 1898.6397322 total: 2.52s remaining: 27.2s
85: learn: 1896.7767149 total: 2.55s remaining: 27.1s
86: learn: 1895.7309070 total: 2.57s remaining: 27s
87: learn: 1893.6437469 total: 2.61s remaining: 27s
88: learn: 1892.2661441 total: 2.64s remaining: 27s
89: learn: 1890.6562989 total: 2.66s remaining: 26.9s
90: learn: 1889.2272362 total: 2.7s remaining: 26.9s
91: learn: 1888.0824101 total: 2.73s remaining: 26.9s
92: learn: 1886.0864054 total: 2.75s remaining: 26.9s
93: learn: 1884.8562493 total: 2.78s remaining: 26.8s
94: learn: 1883.0069150 total: 2.81s remaining: 26.8s
95: learn: 1881.5567136 total: 2.84s remaining: 26.7s
96: learn: 1880.4709431 total: 2.86s remaining: 26.7s
97: learn: 1879.0818030 total: 2.89s remaining: 26.6s
98: learn: 1878.0348438 total: 2.92s remaining: 26.6s
99: learn: 1876.5936624 total: 2.94s remaining: 26.5s
100: learn: 1875.5458102 total: 2.97s remaining: 26.4s
101: learn: 1874.2392974 total: 3s remaining: 26.4s
102: learn: 1872.7273947 total: 3.03s remaining: 26.4s
103: learn: 1871.9796423 total: 3.06s remaining: 26.3s
104: learn: 1871.0081144 total: 3.09s remaining: 26.3s
105: learn: 1869.5694116 total: 3.13s remaining: 26.4s
106: learn: 1868.5905878 total: 3.15s remaining: 26.3s
107: learn: 1867.4230775 total: 3.19s remaining: 26.3s
108: learn: 1866.5483960 total: 3.22s remaining: 26.3s
109: learn: 1865.2736743 total: 3.24s remaining: 26.2s
110: learn: 1864.0806387 total: 3.27s remaining: 26.2s
111: learn: 1862.9032439 total: 3.3s remaining: 26.2s
112: learn: 1861.4910665 total: 3.33s remaining: 26.1s
113: learn: 1860.8658290 total: 3.35s remaining: 26.1s
114: learn: 1860.0463301 total: 3.38s remaining: 26s
115: learn: 1859.0809276 total: 3.41s remaining: 26s
116: learn: 1858.1041255 total: 3.44s remaining: 25.9s
117: learn: 1856.7278265 total: 3.46s remaining: 25.9s
118: learn: 1855.7331864 total: 3.5s remaining: 25.9s
119: learn: 1855.2109016 total: 3.52s remaining: 25.8s
120: learn: 1854.0463783 total: 3.54s remaining: 25.8s
121: learn: 1853.2561436 total: 3.57s remaining: 25.7s
122: learn: 1852.2705275 total: 3.6s remaining: 25.7s
123: learn: 1851.3212325 total: 3.63s remaining: 25.6s
124: learn: 1850.7828433 total: 3.65s remaining: 25.6s
125: learn: 1850.0044134 total: 3.69s remaining: 25.6s
126: learn: 1848.8851863 total: 3.72s remaining: 25.5s
127: learn: 1847.9850439 total: 3.74s remaining: 25.5s
128: learn: 1847.2405298 total: 3.77s remaining: 25.5s
129: learn: 1846.5997035 total: 3.8s remaining: 25.5s
130: learn: 1845.6858745 total: 3.83s remaining: 25.4s
131: learn: 1845.0205734 total: 3.85s remaining: 25.4s
132: learn: 1844.4283663 total: 3.88s remaining: 25.3s
133: learn: 1843.3508277 total: 3.91s remaining: 25.3s
134: learn: 1842.4917760 total: 3.93s remaining: 25.2s
135: learn: 1841.7205410 total: 3.96s remaining: 25.2s
136: learn: 1841.2671239 total: 3.99s remaining: 25.1s
137: learn: 1840.4912436 total: 4.01s remaining: 25.1s
138: learn: 1839.4392474 total: 4.04s remaining: 25s
139: learn: 1838.7598800 total: 4.07s remaining: 25s
140: learn: 1837.6275281 total: 4.1s remaining: 25s
141: learn: 1837.0300515 total: 4.12s remaining: 24.9s
142: learn: 1835.7506448 total: 4.16s remaining: 24.9s
143: learn: 1835.1490623 total: 4.18s remaining: 24.9s
144: learn: 1834.7767387 total: 4.21s remaining: 24.8s
145: learn: 1834.2017591 total: 4.23s remaining: 24.8s
146: learn: 1833.1115486 total: 4.27s remaining: 24.8s
147: learn: 1832.5274497 total: 4.29s remaining: 24.7s
148: learn: 1831.9104444 total: 4.32s remaining: 24.7s
149: learn: 1830.9384275 total: 4.35s remaining: 24.7s
150: learn: 1830.3468491 total: 4.38s remaining: 24.6s
151: learn: 1829.6852741 total: 4.4s remaining: 24.6s
152: learn: 1829.2867880 total: 4.43s remaining: 24.5s
153: learn: 1828.3951800 total: 4.46s remaining: 24.5s
154: learn: 1827.9332471 total: 4.49s remaining: 24.5s
155: learn: 1827.4409551 total: 4.51s remaining: 24.4s
156: learn: 1826.6181288 total: 4.55s remaining: 24.4s
157: learn: 1826.0683988 total: 4.57s remaining: 24.4s
158: learn: 1825.4405372 total: 4.6s remaining: 24.3s
159: learn: 1824.8747043 total: 4.63s remaining: 24.3s
160: learn: 1823.8438630 total: 4.66s remaining: 24.3s
161: learn: 1822.7986957 total: 4.69s remaining: 24.3s
162: learn: 1821.8371293 total: 4.72s remaining: 24.2s
163: learn: 1821.1604359 total: 4.75s remaining: 24.2s
164: learn: 1820.3884148 total: 4.78s remaining: 24.2s
165: learn: 1819.7372595 total: 4.8s remaining: 24.1s
166: learn: 1818.9114948 total: 4.83s remaining: 24.1s
167: learn: 1818.2721048 total: 4.86s remaining: 24.1s
168: learn: 1817.6493526 total: 4.89s remaining: 24s
169: learn: 1817.1327550 total: 4.92s remaining: 24s
170: learn: 1816.2850882 total: 4.95s remaining: 24s
171: learn: 1815.9746774 total: 4.97s remaining: 23.9s
172: learn: 1815.2704079 total: 5s remaining: 23.9s
173: learn: 1814.5983519 total: 5.03s remaining: 23.9s
174: learn: 1813.9587513 total: 5.06s remaining: 23.9s
175: learn: 1813.4714686 total: 5.08s remaining: 23.8s
176: learn: 1812.5540059 total: 5.11s remaining: 23.8s
177: learn: 1811.8692735 total: 5.14s remaining: 23.7s
178: learn: 1811.2310537 total: 5.17s remaining: 23.7s
179: learn: 1810.6224038 total: 5.19s remaining: 23.7s
180: learn: 1810.1706762 total: 5.22s remaining: 23.6s
181: learn: 1809.4580820 total: 5.25s remaining: 23.6s
182: learn: 1809.0431776 total: 5.28s remaining: 23.6s
183: learn: 1808.4229498 total: 5.31s remaining: 23.5s
184: learn: 1808.0511439 total: 5.34s remaining: 23.5s
185: learn: 1807.5310724 total: 5.36s remaining: 23.5s
186: learn: 1806.9048726 total: 5.38s remaining: 23.4s
187: learn: 1806.2448865 total: 5.42s remaining: 23.4s
188: learn: 1805.7372077 total: 5.45s remaining: 23.4s
189: learn: 1805.0334859 total: 5.47s remaining: 23.3s
190: learn: 1804.6288079 total: 5.5s remaining: 23.3s
191: learn: 1804.0443957 total: 5.53s remaining: 23.3s
192: learn: 1803.5516212 total: 5.56s remaining: 23.2s
193: learn: 1803.1706971 total: 5.58s remaining: 23.2s
194: learn: 1802.7091580 total: 5.62s remaining: 23.2s
195: learn: 1802.1294562 total: 5.65s remaining: 23.2s
196: learn: 1801.5709895 total: 5.67s remaining: 23.1s
197: learn: 1801.0411929 total: 5.7s remaining: 23.1s
198: learn: 1800.5304245 total: 5.73s remaining: 23.1s
199: learn: 1800.1347367 total: 5.76s remaining: 23s
200: learn: 1799.6507108 total: 5.78s remaining: 23s
201: learn: 1799.2618285 total: 5.82s remaining: 23s
202: learn: 1798.7405363 total: 5.84s remaining: 22.9s
203: learn: 1798.3284198 total: 5.87s remaining: 22.9s
204: learn: 1797.9387129 total: 5.9s remaining: 22.9s
205: learn: 1797.3296131 total: 5.93s remaining: 22.9s
206: learn: 1796.8962363 total: 5.95s remaining: 22.8s
207: learn: 1796.2272868 total: 5.98s remaining: 22.8s
208: learn: 1795.8542847 total: 6.01s remaining: 22.8s
209: learn: 1795.5041699 total: 6.04s remaining: 22.7s
210: learn: 1795.0762391 total: 6.06s remaining: 22.7s
211: learn: 1794.6860514 total: 6.09s remaining: 22.7s
212: learn: 1794.4220489 total: 6.12s remaining: 22.6s
213: learn: 1793.9559086 total: 6.15s remaining: 22.6s
214: learn: 1793.4779905 total: 6.18s remaining: 22.6s
215: learn: 1792.9177417 total: 6.21s remaining: 22.5s
216: learn: 1792.5742492 total: 6.23s remaining: 22.5s
217: learn: 1792.1934178 total: 6.25s remaining: 22.4s
218: learn: 1791.6152712 total: 6.29s remaining: 22.4s
219: learn: 1790.9485466 total: 6.32s remaining: 22.4s
220: learn: 1790.4421135 total: 6.34s remaining: 22.4s
221: learn: 1789.9651209 total: 6.38s remaining: 22.4s
222: learn: 1789.4653951 total: 6.41s remaining: 22.3s
223: learn: 1789.0254102 total: 6.44s remaining: 22.3s
224: learn: 1788.5207419 total: 6.47s remaining: 22.3s
225: learn: 1787.9935923 total: 6.5s remaining: 22.3s
226: learn: 1787.6053252 total: 6.53s remaining: 22.2s
227: learn: 1787.0069077 total: 6.57s remaining: 22.2s
228: learn: 1786.6498792 total: 6.59s remaining: 22.2s
229: learn: 1786.2885922 total: 6.62s remaining: 22.2s
230: learn: 1785.9739746 total: 6.65s remaining: 22.1s
231: learn: 1785.5867575 total: 6.68s remaining: 22.1s
232: learn: 1785.2110025 total: 6.71s remaining: 22.1s
233: learn: 1784.8957227 total: 6.73s remaining: 22s
234: learn: 1784.2937894 total: 6.76s remaining: 22s
235: learn: 1783.8458219 total: 6.79s remaining: 22s
236: learn: 1783.5137269 total: 6.81s remaining: 21.9s
237: learn: 1783.1772805 total: 6.85s remaining: 21.9s
238: learn: 1782.8928263 total: 6.87s remaining: 21.9s
239: learn: 1782.4346708 total: 6.9s remaining: 21.9s
240: learn: 1782.1075159 total: 6.94s remaining: 21.9s
241: learn: 1781.8655481 total: 6.97s remaining: 21.8s
242: learn: 1781.4764102 total: 7s remaining: 21.8s
243: learn: 1780.9708223 total: 7.03s remaining: 21.8s
244: learn: 1780.5936453 total: 7.06s remaining: 21.8s
245: learn: 1780.1576541 total: 7.08s remaining: 21.7s
246: learn: 1779.8953892 total: 7.12s remaining: 21.7s
247: learn: 1779.6128438 total: 7.14s remaining: 21.7s
248: learn: 1779.2206256 total: 7.17s remaining: 21.6s
249: learn: 1778.6783712 total: 7.21s remaining: 21.6s
250: learn: 1778.3048553 total: 7.23s remaining: 21.6s
251: learn: 1778.0201684 total: 7.26s remaining: 21.5s
252: learn: 1777.6047387 total: 7.28s remaining: 21.5s
253: learn: 1777.4089061 total: 7.32s remaining: 21.5s
254: learn: 1776.9298193 total: 7.35s remaining: 21.5s
255: learn: 1776.1595910 total: 7.38s remaining: 21.4s
256: learn: 1775.8020090 total: 7.42s remaining: 21.4s
257: learn: 1775.4337353 total: 7.44s remaining: 21.4s
258: learn: 1775.1437970 total: 7.47s remaining: 21.4s
259: learn: 1774.7645655 total: 7.51s remaining: 21.4s
260: learn: 1774.6007786 total: 7.53s remaining: 21.3s
261: learn: 1774.2270517 total: 7.56s remaining: 21.3s
262: learn: 1773.8980233 total: 7.59s remaining: 21.3s
263: learn: 1773.6019606 total: 7.62s remaining: 21.2s
264: learn: 1773.2541590 total: 7.64s remaining: 21.2s
265: learn: 1772.9098394 total: 7.67s remaining: 21.2s
266: learn: 1772.6480298 total: 7.71s remaining: 21.2s
267: learn: 1772.2916892 total: 7.74s remaining: 21.1s
268: learn: 1772.0256273 total: 7.76s remaining: 21.1s
269: learn: 1771.6764198 total: 7.8s remaining: 21.1s
270: learn: 1771.4138150 total: 7.83s remaining: 21.1s
271: learn: 1771.1726733 total: 7.85s remaining: 21s
272: learn: 1770.9139525 total: 7.89s remaining: 21s
273: learn: 1770.6310319 total: 7.92s remaining: 21s
274: learn: 1770.2217129 total: 7.94s remaining: 20.9s
275: learn: 1769.8580994 total: 7.98s remaining: 20.9s
276: learn: 1769.3327386 total: 8.01s remaining: 20.9s
277: learn: 1768.9842687 total: 8.03s remaining: 20.9s
278: learn: 1768.7405948 total: 8.07s remaining: 20.9s
279: learn: 1768.5476045 total: 8.09s remaining: 20.8s
280: learn: 1768.2350517 total: 8.12s remaining: 20.8s
281: learn: 1767.8639743 total: 8.15s remaining: 20.7s
282: learn: 1767.5420279 total: 8.18s remaining: 20.7s
283: learn: 1767.1342623 total: 8.2s remaining: 20.7s
284: learn: 1766.6719452 total: 8.23s remaining: 20.6s
285: learn: 1766.4257154 total: 8.26s remaining: 20.6s
286: learn: 1766.2606695 total: 8.28s remaining: 20.6s
287: learn: 1766.0128594 total: 8.3s remaining: 20.5s
288: learn: 1765.7747439 total: 8.34s remaining: 20.5s
289: learn: 1765.5564676 total: 8.37s remaining: 20.5s
290: learn: 1765.1584395 total: 8.4s remaining: 20.5s
291: learn: 1764.8616412 total: 8.43s remaining: 20.4s
292: learn: 1764.4635015 total: 8.46s remaining: 20.4s
293: learn: 1764.2829156 total: 8.48s remaining: 20.4s
294: learn: 1764.0783554 total: 8.52s remaining: 20.3s
295: learn: 1763.7073877 total: 8.54s remaining: 20.3s
296: learn: 1763.3546237 total: 8.58s remaining: 20.3s
297: learn: 1762.7518869 total: 8.62s remaining: 20.3s
298: learn: 1762.3325089 total: 8.64s remaining: 20.3s
299: learn: 1762.0082812 total: 8.67s remaining: 20.2s
300: learn: 1761.7399828 total: 8.71s remaining: 20.2s
301: learn: 1761.2515317 total: 8.75s remaining: 20.2s
302: learn: 1760.9695494 total: 8.78s remaining: 20.2s
303: learn: 1760.6656191 total: 8.81s remaining: 20.2s
304: learn: 1760.3112267 total: 8.84s remaining: 20.1s
305: learn: 1759.9555512 total: 8.87s remaining: 20.1s
306: learn: 1759.7164160 total: 8.89s remaining: 20.1s
307: learn: 1759.3171538 total: 8.93s remaining: 20.1s
308: learn: 1759.1493001 total: 8.96s remaining: 20s
309: learn: 1758.8299468 total: 9s remaining: 20s
310: learn: 1758.5077660 total: 9.02s remaining: 20s
311: learn: 1758.2953289 total: 9.05s remaining: 20s
312: learn: 1757.9497341 total: 9.08s remaining: 19.9s
313: learn: 1757.6497321 total: 9.11s remaining: 19.9s
314: learn: 1757.3205897 total: 9.13s remaining: 19.9s
315: learn: 1757.0144613 total: 9.16s remaining: 19.8s
316: learn: 1756.8174851 total: 9.2s remaining: 19.8s
317: learn: 1756.3494753 total: 9.22s remaining: 19.8s
318: learn: 1755.9999551 total: 9.26s remaining: 19.8s
319: learn: 1755.6536886 total: 9.29s remaining: 19.7s
320: learn: 1755.5118399 total: 9.31s remaining: 19.7s
321: learn: 1755.1910498 total: 9.34s remaining: 19.7s
322: learn: 1754.7174160 total: 9.37s remaining: 19.6s
323: learn: 1754.4094036 total: 9.39s remaining: 19.6s
324: learn: 1754.1873703 total: 9.42s remaining: 19.6s
325: learn: 1753.9226120 total: 9.46s remaining: 19.6s
326: learn: 1753.7415048 total: 9.49s remaining: 19.5s
327: learn: 1753.4078161 total: 9.53s remaining: 19.5s
328: learn: 1753.2049382 total: 9.55s remaining: 19.5s
329: learn: 1752.7452257 total: 9.58s remaining: 19.5s
330: learn: 1752.3937809 total: 9.62s remaining: 19.4s
331: learn: 1752.2062002 total: 9.64s remaining: 19.4s
332: learn: 1752.0074876 total: 9.67s remaining: 19.4s
333: learn: 1751.4108772 total: 9.7s remaining: 19.3s
334: learn: 1751.1701228 total: 9.73s remaining: 19.3s
335: learn: 1750.9396319 total: 9.76s remaining: 19.3s
336: learn: 1750.6568867 total: 9.78s remaining: 19.2s
337: learn: 1750.4179003 total: 9.82s remaining: 19.2s
338: learn: 1750.0097971 total: 9.84s remaining: 19.2s
339: learn: 1749.6475614 total: 9.87s remaining: 19.2s
340: learn: 1749.1541904 total: 9.91s remaining: 19.1s
341: learn: 1748.8336805 total: 9.94s remaining: 19.1s
342: learn: 1748.4754793 total: 9.96s remaining: 19.1s
343: learn: 1748.1004592 total: 10s remaining: 19.1s
344: learn: 1747.6660105 total: 10s remaining: 19s
345: learn: 1747.4178667 total: 10.1s remaining: 19s
346: learn: 1746.9875839 total: 10.1s remaining: 19s
347: learn: 1746.7546934 total: 10.1s remaining: 19s
348: learn: 1746.5964561 total: 10.1s remaining: 18.9s
349: learn: 1746.2346799 total: 10.2s remaining: 18.9s
350: learn: 1745.9461021 total: 10.2s remaining: 18.9s
351: learn: 1745.5091171 total: 10.2s remaining: 18.8s
352: learn: 1745.2208874 total: 10.3s remaining: 18.8s
353: learn: 1745.0528405 total: 10.3s remaining: 18.8s
354: learn: 1744.6236781 total: 10.3s remaining: 18.7s
355: learn: 1744.2941014 total: 10.3s remaining: 18.7s
356: learn: 1744.0349586 total: 10.4s remaining: 18.7s
357: learn: 1743.8517934 total: 10.4s remaining: 18.6s
358: learn: 1743.7022430 total: 10.4s remaining: 18.6s
359: learn: 1743.3636334 total: 10.4s remaining: 18.6s
360: learn: 1743.1381863 total: 10.5s remaining: 18.6s
361: learn: 1742.9026507 total: 10.5s remaining: 18.5s
362: learn: 1742.6416858 total: 10.5s remaining: 18.5s
363: learn: 1742.3137898 total: 10.6s remaining: 18.4s
364: learn: 1742.0076015 total: 10.6s remaining: 18.4s
365: learn: 1741.5668054 total: 10.6s remaining: 18.4s
366: learn: 1741.3258716 total: 10.6s remaining: 18.4s
367: learn: 1740.9401614 total: 10.7s remaining: 18.3s
368: learn: 1740.5763483 total: 10.7s remaining: 18.3s
369: learn: 1740.3584201 total: 10.7s remaining: 18.3s
370: learn: 1740.0191395 total: 10.8s remaining: 18.2s
371: learn: 1739.7396172 total: 10.8s remaining: 18.2s
372: learn: 1739.6329241 total: 10.8s remaining: 18.2s
373: learn: 1739.3091788 total: 10.8s remaining: 18.1s
374: learn: 1738.9915444 total: 10.9s remaining: 18.1s
375: learn: 1738.7986899 total: 10.9s remaining: 18.1s
376: learn: 1738.4893310 total: 10.9s remaining: 18.1s
377: learn: 1738.2941249 total: 11s remaining: 18s
378: learn: 1737.9795285 total: 11s remaining: 18s
379: learn: 1737.7886246 total: 11s remaining: 18s
380: learn: 1737.5438758 total: 11.1s remaining: 18s
381: learn: 1737.3271277 total: 11.1s remaining: 17.9s
382: learn: 1737.0665561 total: 11.1s remaining: 17.9s
383: learn: 1736.7825618 total: 11.2s remaining: 17.9s
384: learn: 1736.5778118 total: 11.2s remaining: 17.9s
385: learn: 1736.3626503 total: 11.2s remaining: 17.8s
386: learn: 1736.1689439 total: 11.2s remaining: 17.8s
387: learn: 1735.9733064 total: 11.3s remaining: 17.8s
388: learn: 1735.7655063 total: 11.3s remaining: 17.7s
389: learn: 1735.5452499 total: 11.3s remaining: 17.7s
390: learn: 1735.4435032 total: 11.3s remaining: 17.7s
391: learn: 1735.1709882 total: 11.4s remaining: 17.6s
392: learn: 1734.8905756 total: 11.4s remaining: 17.6s
393: learn: 1734.7153519 total: 11.4s remaining: 17.6s
394: learn: 1734.5482984 total: 11.5s remaining: 17.6s
395: learn: 1734.2773683 total: 11.5s remaining: 17.5s
396: learn: 1734.0339547 total: 11.5s remaining: 17.5s
397: learn: 1733.7334770 total: 11.6s remaining: 17.5s
398: learn: 1733.6165978 total: 11.6s remaining: 17.5s
399: learn: 1733.4355510 total: 11.6s remaining: 17.4s
400: learn: 1733.2195958 total: 11.7s remaining: 17.4s
401: learn: 1732.9910585 total: 11.7s remaining: 17.4s
402: learn: 1732.6998996 total: 11.7s remaining: 17.4s
403: learn: 1732.5161930 total: 11.7s remaining: 17.3s
404: learn: 1732.4039272 total: 11.8s remaining: 17.3s
405: learn: 1732.1314718 total: 11.8s remaining: 17.3s
406: learn: 1731.8206171 total: 11.8s remaining: 17.2s
407: learn: 1731.5837522 total: 11.9s remaining: 17.2s
408: learn: 1731.3991370 total: 11.9s remaining: 17.2s
409: learn: 1731.1328168 total: 11.9s remaining: 17.1s
410: learn: 1730.8627833 total: 11.9s remaining: 17.1s
411: learn: 1730.5340505 total: 12s remaining: 17.1s
412: learn: 1730.1803678 total: 12s remaining: 17.1s
413: learn: 1729.8776971 total: 12s remaining: 17s
414: learn: 1729.6195381 total: 12.1s remaining: 17s
415: learn: 1729.4298405 total: 12.1s remaining: 17s
416: learn: 1729.1739420 total: 12.1s remaining: 17s
417: learn: 1728.9305203 total: 12.2s remaining: 16.9s
418: learn: 1728.6383850 total: 12.2s remaining: 16.9s
419: learn: 1728.4469112 total: 12.2s remaining: 16.9s
420: learn: 1728.2158184 total: 12.3s remaining: 16.9s
421: learn: 1727.9335444 total: 12.3s remaining: 16.8s
422: learn: 1727.7785383 total: 12.3s remaining: 16.8s
423: learn: 1727.5444656 total: 12.3s remaining: 16.8s
424: learn: 1727.2769857 total: 12.4s remaining: 16.7s
425: learn: 1726.9813373 total: 12.4s remaining: 16.7s
426: learn: 1726.8598744 total: 12.4s remaining: 16.7s
427: learn: 1726.7346575 total: 12.5s remaining: 16.6s
428: learn: 1726.5392616 total: 12.5s remaining: 16.6s
429: learn: 1726.3817938 total: 12.5s remaining: 16.6s
430: learn: 1726.0348019 total: 12.5s remaining: 16.6s
431: learn: 1725.8087449 total: 12.6s remaining: 16.5s
432: learn: 1725.6846929 total: 12.6s remaining: 16.5s
433: learn: 1725.5206374 total: 12.6s remaining: 16.5s
434: learn: 1725.3820979 total: 12.7s remaining: 16.4s
435: learn: 1725.2435974 total: 12.7s remaining: 16.4s
436: learn: 1724.9632216 total: 12.7s remaining: 16.4s
437: learn: 1724.7165672 total: 12.7s remaining: 16.4s
438: learn: 1724.4670403 total: 12.8s remaining: 16.3s
439: learn: 1724.2500844 total: 12.8s remaining: 16.3s
440: learn: 1723.9170860 total: 12.8s remaining: 16.3s
441: learn: 1723.7376523 total: 12.9s remaining: 16.2s
442: learn: 1723.4036373 total: 12.9s remaining: 16.2s
443: learn: 1723.1781246 total: 12.9s remaining: 16.2s
444: learn: 1723.0807261 total: 12.9s remaining: 16.1s
445: learn: 1722.9437668 total: 13s remaining: 16.1s
446: learn: 1722.4544707 total: 13s remaining: 16.1s
447: learn: 1722.1753818 total: 13s remaining: 16.1s
448: learn: 1721.9279510 total: 13.1s remaining: 16s
449: learn: 1721.7780541 total: 13.1s remaining: 16s
450: learn: 1721.4904615 total: 13.1s remaining: 16s
451: learn: 1721.2126180 total: 13.1s remaining: 15.9s
452: learn: 1720.9482555 total: 13.2s remaining: 15.9s
453: learn: 1720.7418743 total: 13.2s remaining: 15.9s
454: learn: 1720.4835756 total: 13.2s remaining: 15.8s
455: learn: 1720.3043340 total: 13.3s remaining: 15.8s
456: learn: 1720.0809386 total: 13.3s remaining: 15.8s
457: learn: 1719.8472872 total: 13.3s remaining: 15.8s
458: learn: 1719.6231741 total: 13.3s remaining: 15.7s
459: learn: 1719.4339620 total: 13.4s remaining: 15.7s
460: learn: 1719.1113345 total: 13.4s remaining: 15.7s
461: learn: 1718.9216506 total: 13.4s remaining: 15.6s
462: learn: 1718.6449253 total: 13.5s remaining: 15.6s
463: learn: 1718.4516070 total: 13.5s remaining: 15.6s
464: learn: 1718.2735275 total: 13.5s remaining: 15.5s
465: learn: 1718.0934941 total: 13.5s remaining: 15.5s
466: learn: 1717.9509938 total: 13.6s remaining: 15.5s
467: learn: 1717.7404142 total: 13.6s remaining: 15.5s
468: learn: 1717.5899907 total: 13.6s remaining: 15.4s
469: learn: 1717.2656310 total: 13.7s remaining: 15.4s
470: learn: 1717.0293722 total: 13.7s remaining: 15.4s
471: learn: 1716.8992923 total: 13.7s remaining: 15.3s
472: learn: 1716.7882595 total: 13.7s remaining: 15.3s
473: learn: 1716.6295782 total: 13.8s remaining: 15.3s
474: learn: 1716.3993161 total: 13.8s remaining: 15.3s
475: learn: 1716.2190218 total: 13.8s remaining: 15.2s
476: learn: 1716.0543229 total: 13.9s remaining: 15.2s
477: learn: 1715.8827104 total: 13.9s remaining: 15.2s
478: learn: 1715.6810915 total: 13.9s remaining: 15.1s
479: learn: 1715.4811111 total: 13.9s remaining: 15.1s
480: learn: 1715.2444496 total: 14s remaining: 15.1s
481: learn: 1715.1047805 total: 14s remaining: 15s
482: learn: 1714.9458361 total: 14s remaining: 15s
483: learn: 1714.6442558 total: 14.1s remaining: 15s
484: learn: 1714.4807301 total: 14.1s remaining: 14.9s
485: learn: 1714.0284871 total: 14.1s remaining: 14.9s
486: learn: 1713.9137887 total: 14.1s remaining: 14.9s
487: learn: 1713.5953399 total: 14.2s remaining: 14.9s
488: learn: 1713.4435645 total: 14.2s remaining: 14.8s
489: learn: 1713.3278370 total: 14.2s remaining: 14.8s
490: learn: 1713.0345379 total: 14.3s remaining: 14.8s
491: learn: 1712.9003829 total: 14.3s remaining: 14.7s
492: learn: 1712.5733320 total: 14.3s remaining: 14.7s
493: learn: 1712.2626354 total: 14.3s remaining: 14.7s
494: learn: 1712.1375486 total: 14.4s remaining: 14.7s
495: learn: 1712.0029651 total: 14.4s remaining: 14.6s
496: learn: 1711.8783687 total: 14.4s remaining: 14.6s
497: learn: 1711.6887611 total: 14.4s remaining: 14.6s
498: learn: 1711.4937066 total: 14.5s remaining: 14.5s
499: learn: 1711.2500774 total: 14.5s remaining: 14.5s
500: learn: 1711.0106250 total: 14.5s remaining: 14.5s
501: learn: 1710.6622824 total: 14.6s remaining: 14.4s
502: learn: 1710.3967019 total: 14.6s remaining: 14.4s
503: learn: 1710.2537493 total: 14.6s remaining: 14.4s
504: learn: 1710.0657868 total: 14.7s remaining: 14.4s
505: learn: 1709.7803881 total: 14.7s remaining: 14.3s
506: learn: 1709.6085689 total: 14.7s remaining: 14.3s
507: learn: 1709.2917713 total: 14.7s remaining: 14.3s
508: learn: 1709.1483985 total: 14.8s remaining: 14.2s
509: learn: 1708.8921052 total: 14.8s remaining: 14.2s
510: learn: 1708.7281057 total: 14.8s remaining: 14.2s
511: learn: 1708.5226515 total: 14.9s remaining: 14.2s
512: learn: 1708.3334075 total: 14.9s remaining: 14.1s
513: learn: 1708.0701365 total: 14.9s remaining: 14.1s
514: learn: 1707.9969639 total: 14.9s remaining: 14.1s
515: learn: 1707.8728807 total: 15s remaining: 14s
516: learn: 1707.7011738 total: 15s remaining: 14s
517: learn: 1707.5569911 total: 15s remaining: 14s
518: learn: 1707.4211051 total: 15s remaining: 13.9s
519: learn: 1707.2573006 total: 15.1s remaining: 13.9s
520: learn: 1706.9806542 total: 15.1s remaining: 13.9s
521: learn: 1706.6764198 total: 15.1s remaining: 13.9s
522: learn: 1706.4665352 total: 15.2s remaining: 13.8s
523: learn: 1706.2040300 total: 15.2s remaining: 13.8s
524: learn: 1706.0187729 total: 15.2s remaining: 13.8s
525: learn: 1705.7935691 total: 15.3s remaining: 13.7s
526: learn: 1705.6377950 total: 15.3s remaining: 13.7s
527: learn: 1705.4742646 total: 15.3s remaining: 13.7s
528: learn: 1705.2907309 total: 15.3s remaining: 13.6s
529: learn: 1705.0938245 total: 15.4s remaining: 13.6s
530: learn: 1704.8330837 total: 15.4s remaining: 13.6s
531: learn: 1704.6816496 total: 15.4s remaining: 13.6s
532: learn: 1704.5582979 total: 15.5s remaining: 13.5s
533: learn: 1704.4800691 total: 15.5s remaining: 13.5s
534: learn: 1704.2715661 total: 15.5s remaining: 13.5s
535: learn: 1704.0043432 total: 15.5s remaining: 13.4s
536: learn: 1703.9079548 total: 15.6s remaining: 13.4s
537: learn: 1703.7005154 total: 15.6s remaining: 13.4s
538: learn: 1703.5137220 total: 15.6s remaining: 13.4s
539: learn: 1703.2519848 total: 15.7s remaining: 13.3s
540: learn: 1702.9926342 total: 15.7s remaining: 13.3s
541: learn: 1702.8273283 total: 15.7s remaining: 13.3s
542: learn: 1702.6653077 total: 15.7s remaining: 13.2s
543: learn: 1702.4734346 total: 15.8s remaining: 13.2s
544: learn: 1702.2042526 total: 15.8s remaining: 13.2s
545: learn: 1701.9865799 total: 15.8s remaining: 13.2s
546: learn: 1701.8604844 total: 15.9s remaining: 13.1s
547: learn: 1701.5597698 total: 15.9s remaining: 13.1s
548: learn: 1701.3083877 total: 15.9s remaining: 13.1s
549: learn: 1701.1930557 total: 15.9s remaining: 13s
550: learn: 1701.0015065 total: 16s remaining: 13s
551: learn: 1700.7992349 total: 16s remaining: 13s
552: learn: 1700.5855194 total: 16s remaining: 13s
553: learn: 1700.3806090 total: 16.1s remaining: 12.9s
554: learn: 1700.1798941 total: 16.1s remaining: 12.9s
555: learn: 1699.9670715 total: 16.1s remaining: 12.9s
556: learn: 1699.7511425 total: 16.1s remaining: 12.8s
557: learn: 1699.4064817 total: 16.2s remaining: 12.8s
558: learn: 1699.1381388 total: 16.2s remaining: 12.8s
559: learn: 1699.0094828 total: 16.2s remaining: 12.8s
560: learn: 1698.7925045 total: 16.3s remaining: 12.7s
561: learn: 1698.5678056 total: 16.3s remaining: 12.7s
562: learn: 1698.3937034 total: 16.3s remaining: 12.7s
563: learn: 1698.1925711 total: 16.4s remaining: 12.6s
564: learn: 1698.1145474 total: 16.4s remaining: 12.6s
565: learn: 1697.9519039 total: 16.4s remaining: 12.6s
566: learn: 1697.8247139 total: 16.4s remaining: 12.6s
567: learn: 1697.5858935 total: 16.5s remaining: 12.5s
568: learn: 1697.3396739 total: 16.5s remaining: 12.5s
569: learn: 1697.1720167 total: 16.5s remaining: 12.5s
570: learn: 1697.0033719 total: 16.6s remaining: 12.4s
571: learn: 1696.8005481 total: 16.6s remaining: 12.4s
572: learn: 1696.6541201 total: 16.6s remaining: 12.4s
573: learn: 1696.5818148 total: 16.6s remaining: 12.3s
574: learn: 1696.3754714 total: 16.7s remaining: 12.3s
575: learn: 1696.3000425 total: 16.7s remaining: 12.3s
576: learn: 1696.2020097 total: 16.7s remaining: 12.3s
577: learn: 1696.0019590 total: 16.7s remaining: 12.2s
578: learn: 1695.8180916 total: 16.8s remaining: 12.2s
579: learn: 1695.7177021 total: 16.8s remaining: 12.2s
580: learn: 1695.4794168 total: 16.8s remaining: 12.1s
581: learn: 1695.3164338 total: 16.9s remaining: 12.1s
582: learn: 1695.1899425 total: 16.9s remaining: 12.1s
583: learn: 1695.0896771 total: 16.9s remaining: 12.1s
584: learn: 1694.9246077 total: 16.9s remaining: 12s
585: learn: 1694.7634986 total: 17s remaining: 12s
586: learn: 1694.6179629 total: 17s remaining: 12s
587: learn: 1694.4259391 total: 17s remaining: 11.9s
588: learn: 1694.2371809 total: 17.1s remaining: 11.9s
589: learn: 1694.0692386 total: 17.1s remaining: 11.9s
590: learn: 1693.9757323 total: 17.1s remaining: 11.8s
591: learn: 1693.8130888 total: 17.1s remaining: 11.8s
592: learn: 1693.6191992 total: 17.2s remaining: 11.8s
593: learn: 1693.2655907 total: 17.2s remaining: 11.8s
594: learn: 1692.9366062 total: 17.2s remaining: 11.7s
595: learn: 1692.7794646 total: 17.3s remaining: 11.7s
596: learn: 1692.6158411 total: 17.3s remaining: 11.7s
597: learn: 1692.4724049 total: 17.3s remaining: 11.6s
598: learn: 1692.3002893 total: 17.4s remaining: 11.6s
599: learn: 1692.1372872 total: 17.4s remaining: 11.6s
600: learn: 1692.0256380 total: 17.4s remaining: 11.6s
601: learn: 1691.8746400 total: 17.4s remaining: 11.5s
602: learn: 1691.7756650 total: 17.5s remaining: 11.5s
603: learn: 1691.4399085 total: 17.5s remaining: 11.5s
604: learn: 1691.2439539 total: 17.5s remaining: 11.4s
605: learn: 1691.0219009 total: 17.6s remaining: 11.4s
606: learn: 1690.9145686 total: 17.6s remaining: 11.4s
607: learn: 1690.6484252 total: 17.6s remaining: 11.4s
608: learn: 1690.3131511 total: 17.7s remaining: 11.3s
609: learn: 1690.1579202 total: 17.7s remaining: 11.3s
610: learn: 1690.0204808 total: 17.7s remaining: 11.3s
611: learn: 1689.8857567 total: 17.7s remaining: 11.2s
612: learn: 1689.6444494 total: 17.8s remaining: 11.2s
613: learn: 1689.5624202 total: 17.8s remaining: 11.2s
614: learn: 1689.4156172 total: 17.8s remaining: 11.2s
615: learn: 1689.2260816 total: 17.9s remaining: 11.1s
616: learn: 1689.1589531 total: 17.9s remaining: 11.1s
617: learn: 1688.9118089 total: 17.9s remaining: 11.1s
618: learn: 1688.8320749 total: 17.9s remaining: 11s
619: learn: 1688.7433289 total: 18s remaining: 11s
620: learn: 1688.6580625 total: 18s remaining: 11s
621: learn: 1688.4420783 total: 18s remaining: 10.9s
622: learn: 1688.2603251 total: 18.1s remaining: 10.9s
623: learn: 1688.0310150 total: 18.1s remaining: 10.9s
624: learn: 1687.9591354 total: 18.1s remaining: 10.9s
625: learn: 1687.6776050 total: 18.1s remaining: 10.8s
626: learn: 1687.5873123 total: 18.2s remaining: 10.8s
627: learn: 1687.4408763 total: 18.2s remaining: 10.8s
628: learn: 1687.3139996 total: 18.2s remaining: 10.7s
629: learn: 1687.1914045 total: 18.3s remaining: 10.7s
630: learn: 1687.0315190 total: 18.3s remaining: 10.7s
631: learn: 1686.9108952 total: 18.3s remaining: 10.7s
632: learn: 1686.8037896 total: 18.3s remaining: 10.6s
633: learn: 1686.5412798 total: 18.4s remaining: 10.6s
634: learn: 1686.4454363 total: 18.4s remaining: 10.6s
635: learn: 1686.2951521 total: 18.4s remaining: 10.6s
636: learn: 1686.0414855 total: 18.5s remaining: 10.5s
637: learn: 1685.9143298 total: 18.5s remaining: 10.5s
638: learn: 1685.7450530 total: 18.5s remaining: 10.5s
639: learn: 1685.5805690 total: 18.6s remaining: 10.4s
640: learn: 1685.4675049 total: 18.6s remaining: 10.4s
641: learn: 1685.2484957 total: 18.6s remaining: 10.4s
642: learn: 1685.0274568 total: 18.7s remaining: 10.4s
643: learn: 1684.9189012 total: 18.7s remaining: 10.3s
644: learn: 1684.7879960 total: 18.7s remaining: 10.3s
645: learn: 1684.5981096 total: 18.8s remaining: 10.3s
646: learn: 1684.4790667 total: 18.8s remaining: 10.2s
647: learn: 1684.3821611 total: 18.8s remaining: 10.2s
648: learn: 1684.2330485 total: 18.8s remaining: 10.2s
649: learn: 1684.1533294 total: 18.9s remaining: 10.2s
650: learn: 1684.0391716 total: 18.9s remaining: 10.1s
651: learn: 1683.9076379 total: 18.9s remaining: 10.1s
652: learn: 1683.7766493 total: 19s remaining: 10.1s
653: learn: 1683.7201671 total: 19s remaining: 10s
654: learn: 1683.5800809 total: 19s remaining: 10s
655: learn: 1683.3888538 total: 19s remaining: 9.99s
656: learn: 1683.2583378 total: 19.1s remaining: 9.96s
657: learn: 1683.2229123 total: 19.1s remaining: 9.93s
658: learn: 1683.0169045 total: 19.1s remaining: 9.9s
659: learn: 1682.8291523 total: 19.2s remaining: 9.87s
660: learn: 1682.6705302 total: 19.2s remaining: 9.85s
661: learn: 1682.5221901 total: 19.2s remaining: 9.81s
662: learn: 1682.2991305 total: 19.2s remaining: 9.78s
663: learn: 1682.1167998 total: 19.3s remaining: 9.76s
664: learn: 1681.8474062 total: 19.3s remaining: 9.73s
665: learn: 1681.7176894 total: 19.3s remaining: 9.7s
666: learn: 1681.5881109 total: 19.4s remaining: 9.66s
667: learn: 1681.4356576 total: 19.4s remaining: 9.64s
668: learn: 1681.3358104 total: 19.4s remaining: 9.61s
669: learn: 1681.1179703 total: 19.4s remaining: 9.58s
670: learn: 1681.0324453 total: 19.5s remaining: 9.55s
671: learn: 1680.9086651 total: 19.5s remaining: 9.52s
672: learn: 1680.7300019 total: 19.5s remaining: 9.49s
673: learn: 1680.5868102 total: 19.6s remaining: 9.46s
674: learn: 1680.3812620 total: 19.6s remaining: 9.43s
675: learn: 1680.2664712 total: 19.6s remaining: 9.4s
676: learn: 1680.1012385 total: 19.6s remaining: 9.37s
677: learn: 1679.9858134 total: 19.7s remaining: 9.34s
678: learn: 1679.8315992 total: 19.7s remaining: 9.31s
679: learn: 1679.5689406 total: 19.7s remaining: 9.28s
680: learn: 1679.4530340 total: 19.7s remaining: 9.25s
681: learn: 1679.3040812 total: 19.8s remaining: 9.22s
682: learn: 1679.0986971 total: 19.8s remaining: 9.19s
683: learn: 1678.9035850 total: 19.8s remaining: 9.16s
684: learn: 1678.6862356 total: 19.9s remaining: 9.13s
685: learn: 1678.5839143 total: 19.9s remaining: 9.1s
686: learn: 1678.3733202 total: 19.9s remaining: 9.07s
687: learn: 1678.1995130 total: 19.9s remaining: 9.04s
688: learn: 1678.0689777 total: 20s remaining: 9.01s
689: learn: 1677.9066625 total: 20s remaining: 8.98s
690: learn: 1677.8512997 total: 20s remaining: 8.95s
691: learn: 1677.6670885 total: 20s remaining: 8.92s
692: learn: 1677.4732526 total: 20.1s remaining: 8.9s
693: learn: 1677.3645319 total: 20.1s remaining: 8.86s
694: learn: 1677.1916012 total: 20.1s remaining: 8.83s
695: learn: 1677.0773492 total: 20.2s remaining: 8.8s
696: learn: 1676.9287784 total: 20.2s remaining: 8.78s
697: learn: 1676.7781923 total: 20.2s remaining: 8.74s
698: learn: 1676.6902779 total: 20.2s remaining: 8.71s
699: learn: 1676.4836240 total: 20.3s remaining: 8.69s
700: learn: 1676.2995831 total: 20.3s remaining: 8.66s
701: learn: 1676.0988945 total: 20.3s remaining: 8.63s
702: learn: 1676.0187427 total: 20.4s remaining: 8.6s
703: learn: 1675.8175145 total: 20.4s remaining: 8.57s
704: learn: 1675.6694229 total: 20.4s remaining: 8.54s
705: learn: 1675.5081644 total: 20.4s remaining: 8.51s
706: learn: 1675.3859556 total: 20.5s remaining: 8.48s
707: learn: 1675.1959602 total: 20.5s remaining: 8.45s
708: learn: 1675.0582819 total: 20.5s remaining: 8.42s
709: learn: 1674.8635034 total: 20.5s remaining: 8.39s
710: learn: 1674.7649809 total: 20.6s remaining: 8.36s
711: learn: 1674.5611209 total: 20.6s remaining: 8.33s
712: learn: 1674.3526369 total: 20.6s remaining: 8.3s
713: learn: 1674.2017076 total: 20.7s remaining: 8.28s
714: learn: 1674.0751615 total: 20.7s remaining: 8.24s
715: learn: 1674.0040425 total: 20.7s remaining: 8.21s
716: learn: 1673.8726861 total: 20.7s remaining: 8.19s
717: learn: 1673.7856527 total: 20.8s remaining: 8.16s
718: learn: 1673.6861518 total: 20.8s remaining: 8.13s
719: learn: 1673.5070964 total: 20.8s remaining: 8.1s
720: learn: 1673.3317298 total: 20.9s remaining: 8.07s
721: learn: 1673.0872549 total: 20.9s remaining: 8.04s
722: learn: 1672.8934869 total: 20.9s remaining: 8.01s
723: learn: 1672.7676725 total: 20.9s remaining: 7.98s
724: learn: 1672.6224146 total: 21s remaining: 7.95s
725: learn: 1672.5349812 total: 21s remaining: 7.92s
726: learn: 1672.3601479 total: 21s remaining: 7.89s
727: learn: 1672.2204424 total: 21.1s remaining: 7.86s
728: learn: 1672.0913483 total: 21.1s remaining: 7.83s
729: learn: 1671.9234616 total: 21.1s remaining: 7.8s
730: learn: 1671.7930279 total: 21.1s remaining: 7.78s
731: learn: 1671.6154734 total: 21.2s remaining: 7.75s
732: learn: 1671.4691018 total: 21.2s remaining: 7.72s
733: learn: 1671.3662726 total: 21.2s remaining: 7.69s
734: learn: 1671.2150508 total: 21.2s remaining: 7.66s
735: learn: 1671.1002763 total: 21.3s remaining: 7.63s
736: learn: 1670.8448925 total: 21.3s remaining: 7.6s
737: learn: 1670.6583812 total: 21.3s remaining: 7.57s
738: learn: 1670.5701926 total: 21.4s remaining: 7.54s
739: learn: 1670.4800599 total: 21.4s remaining: 7.51s
740: learn: 1670.3295738 total: 21.4s remaining: 7.48s
741: learn: 1670.2280426 total: 21.4s remaining: 7.46s
742: learn: 1670.0964092 total: 21.5s remaining: 7.42s
743: learn: 1669.8474310 total: 21.5s remaining: 7.4s
744: learn: 1669.7142909 total: 21.5s remaining: 7.37s
745: learn: 1669.5630984 total: 21.6s remaining: 7.34s
746: learn: 1669.4164866 total: 21.6s remaining: 7.31s
747: learn: 1669.2865245 total: 21.6s remaining: 7.28s
748: learn: 1669.1752961 total: 21.6s remaining: 7.25s
749: learn: 1669.0615318 total: 21.7s remaining: 7.22s
750: learn: 1668.9497851 total: 21.7s remaining: 7.2s
751: learn: 1668.8257854 total: 21.7s remaining: 7.17s
752: learn: 1668.7195730 total: 21.8s remaining: 7.14s
753: learn: 1668.5707645 total: 21.8s remaining: 7.11s
754: learn: 1668.4641886 total: 21.8s remaining: 7.08s
755: learn: 1668.3445392 total: 21.8s remaining: 7.05s
756: learn: 1668.1272034 total: 21.9s remaining: 7.02s
757: learn: 1667.9582165 total: 21.9s remaining: 6.99s
758: learn: 1667.7877307 total: 21.9s remaining: 6.96s
759: learn: 1667.6778062 total: 22s remaining: 6.93s
760: learn: 1667.5350408 total: 22s remaining: 6.91s
761: learn: 1667.4527593 total: 22s remaining: 6.88s
762: learn: 1667.3570469 total: 22s remaining: 6.85s
763: learn: 1667.1210374 total: 22.1s remaining: 6.82s
764: learn: 1667.0292105 total: 22.1s remaining: 6.79s
765: learn: 1666.9051585 total: 22.1s remaining: 6.76s
766: learn: 1666.8039778 total: 22.2s remaining: 6.73s
767: learn: 1666.6727736 total: 22.2s remaining: 6.7s
768: learn: 1666.4808442 total: 22.2s remaining: 6.67s
769: learn: 1666.3561079 total: 22.2s remaining: 6.64s
770: learn: 1666.2341394 total: 22.3s remaining: 6.61s
771: learn: 1666.0896086 total: 22.3s remaining: 6.59s
772: learn: 1665.9620108 total: 22.3s remaining: 6.56s
773: learn: 1665.8675275 total: 22.4s remaining: 6.53s
774: learn: 1665.7587699 total: 22.4s remaining: 6.5s
775: learn: 1665.6476485 total: 22.4s remaining: 6.47s
776: learn: 1665.5291410 total: 22.5s remaining: 6.44s
777: learn: 1665.4501318 total: 22.5s remaining: 6.41s
778: learn: 1665.3761515 total: 22.5s remaining: 6.38s
779: learn: 1665.1300343 total: 22.5s remaining: 6.35s
780: learn: 1665.0619605 total: 22.6s remaining: 6.32s
781: learn: 1664.9496679 total: 22.6s remaining: 6.29s
782: learn: 1664.8428700 total: 22.6s remaining: 6.27s
783: learn: 1664.7491260 total: 22.6s remaining: 6.24s
784: learn: 1664.6830851 total: 22.7s remaining: 6.21s
785: learn: 1664.5236514 total: 22.7s remaining: 6.18s
786: learn: 1664.3916344 total: 22.7s remaining: 6.15s
787: learn: 1664.2107439 total: 22.7s remaining: 6.12s
788: learn: 1664.1254361 total: 22.8s remaining: 6.09s
789: learn: 1663.9937272 total: 22.8s remaining: 6.06s
790: learn: 1663.8209254 total: 22.8s remaining: 6.03s
791: learn: 1663.6816721 total: 22.9s remaining: 6s
792: learn: 1663.5673292 total: 22.9s remaining: 5.97s
793: learn: 1663.5085174 total: 22.9s remaining: 5.94s
794: learn: 1663.3827289 total: 22.9s remaining: 5.92s
795: learn: 1663.2421003 total: 23s remaining: 5.89s
796: learn: 1663.0792440 total: 23s remaining: 5.86s
797: learn: 1662.9455287 total: 23s remaining: 5.83s
798: learn: 1662.7913864 total: 23.1s remaining: 5.8s
799: learn: 1662.6788038 total: 23.1s remaining: 5.77s
800: learn: 1662.5607705 total: 23.1s remaining: 5.74s
801: learn: 1662.4001225 total: 23.1s remaining: 5.71s
802: learn: 1662.2822540 total: 23.2s remaining: 5.68s
803: learn: 1662.1258718 total: 23.2s remaining: 5.65s
804: learn: 1661.9932272 total: 23.2s remaining: 5.62s
805: learn: 1661.9243198 total: 23.3s remaining: 5.6s
806: learn: 1661.7848443 total: 23.3s remaining: 5.57s
807: learn: 1661.6503176 total: 23.3s remaining: 5.54s
808: learn: 1661.5898107 total: 23.3s remaining: 5.51s
809: learn: 1661.5330276 total: 23.4s remaining: 5.48s
810: learn: 1661.4483516 total: 23.4s remaining: 5.45s
811: learn: 1661.2739080 total: 23.4s remaining: 5.42s
812: learn: 1661.2190711 total: 23.4s remaining: 5.39s
813: learn: 1661.1377256 total: 23.5s remaining: 5.36s
814: learn: 1661.0237122 total: 23.5s remaining: 5.33s
815: learn: 1660.8871389 total: 23.5s remaining: 5.3s
816: learn: 1660.6833198 total: 23.6s remaining: 5.28s
817: learn: 1660.5878167 total: 23.6s remaining: 5.25s
818: learn: 1660.3726520 total: 23.6s remaining: 5.22s
819: learn: 1660.3071654 total: 23.6s remaining: 5.19s
820: learn: 1660.2001347 total: 23.7s remaining: 5.16s
821: learn: 1660.0809523 total: 23.7s remaining: 5.13s
822: learn: 1659.9498793 total: 23.7s remaining: 5.11s
823: learn: 1659.8118476 total: 23.8s remaining: 5.08s
824: learn: 1659.6328859 total: 23.8s remaining: 5.05s
825: learn: 1659.4716252 total: 23.8s remaining: 5.02s
826: learn: 1659.3017389 total: 23.9s remaining: 4.99s
827: learn: 1659.0573124 total: 23.9s remaining: 4.96s
828: learn: 1658.9463223 total: 23.9s remaining: 4.93s
829: learn: 1658.8366046 total: 24s remaining: 4.91s
830: learn: 1658.7604503 total: 24s remaining: 4.88s
831: learn: 1658.6496855 total: 24s remaining: 4.85s
832: learn: 1658.5220822 total: 24s remaining: 4.82s
833: learn: 1658.3623051 total: 24.1s remaining: 4.79s
834: learn: 1658.2442258 total: 24.1s remaining: 4.76s
835: learn: 1658.1196974 total: 24.1s remaining: 4.73s
836: learn: 1657.9922985 total: 24.1s remaining: 4.7s
837: learn: 1657.8366839 total: 24.2s remaining: 4.67s
838: learn: 1657.7242300 total: 24.2s remaining: 4.64s
839: learn: 1657.6628246 total: 24.2s remaining: 4.61s
840: learn: 1657.5905210 total: 24.3s remaining: 4.58s
841: learn: 1657.5480274 total: 24.3s remaining: 4.55s
842: learn: 1657.3715236 total: 24.3s remaining: 4.53s
843: learn: 1657.2321130 total: 24.3s remaining: 4.5s
844: learn: 1657.1296136 total: 24.4s remaining: 4.47s
845: learn: 1657.0549657 total: 24.4s remaining: 4.44s
846: learn: 1657.0167465 total: 24.4s remaining: 4.41s
847: learn: 1656.9106329 total: 24.4s remaining: 4.38s
848: learn: 1656.7895851 total: 24.5s remaining: 4.35s
849: learn: 1656.6744955 total: 24.5s remaining: 4.32s
850: learn: 1656.5888923 total: 24.5s remaining: 4.29s
851: learn: 1656.4708069 total: 24.6s remaining: 4.26s
852: learn: 1656.4000303 total: 24.6s remaining: 4.24s
853: learn: 1656.1768470 total: 24.6s remaining: 4.21s
854: learn: 1656.0725921 total: 24.6s remaining: 4.18s
855: learn: 1655.9833523 total: 24.7s remaining: 4.15s
856: learn: 1655.8487313 total: 24.7s remaining: 4.12s
857: learn: 1655.7368577 total: 24.7s remaining: 4.09s
858: learn: 1655.6495851 total: 24.7s remaining: 4.06s
859: learn: 1655.5878920 total: 24.8s remaining: 4.03s
860: learn: 1655.4179533 total: 24.8s remaining: 4s
861: learn: 1655.3617645 total: 24.8s remaining: 3.97s
862: learn: 1655.2468889 total: 24.9s remaining: 3.94s
863: learn: 1655.1083255 total: 24.9s remaining: 3.92s
864: learn: 1655.0595047 total: 24.9s remaining: 3.89s
865: learn: 1654.9295046 total: 24.9s remaining: 3.86s
866: learn: 1654.8844405 total: 25s remaining: 3.83s
867: learn: 1654.8152827 total: 25s remaining: 3.8s
868: learn: 1654.6478396 total: 25s remaining: 3.77s
869: learn: 1654.5005613 total: 25s remaining: 3.74s
870: learn: 1654.3654531 total: 25.1s remaining: 3.71s
871: learn: 1654.2922958 total: 25.1s remaining: 3.68s
872: learn: 1654.1981775 total: 25.1s remaining: 3.65s
873: learn: 1654.0876011 total: 25.2s remaining: 3.63s
874: learn: 1653.9845085 total: 25.2s remaining: 3.6s
875: learn: 1653.8938821 total: 25.2s remaining: 3.57s
876: learn: 1653.7808033 total: 25.2s remaining: 3.54s
877: learn: 1653.7065966 total: 25.3s remaining: 3.51s
878: learn: 1653.4625831 total: 25.3s remaining: 3.48s
879: learn: 1653.3633960 total: 25.3s remaining: 3.45s
880: learn: 1653.1822885 total: 25.4s remaining: 3.42s
881: learn: 1652.9490708 total: 25.4s remaining: 3.4s
882: learn: 1652.7863577 total: 25.4s remaining: 3.37s
883: learn: 1652.6681490 total: 25.4s remaining: 3.34s
884: learn: 1652.5087044 total: 25.5s remaining: 3.31s
885: learn: 1652.2956893 total: 25.5s remaining: 3.28s
886: learn: 1652.1354590 total: 25.5s remaining: 3.25s
887: learn: 1652.0320247 total: 25.6s remaining: 3.22s
888: learn: 1651.9443978 total: 25.6s remaining: 3.19s
889: learn: 1651.8774312 total: 25.6s remaining: 3.17s
890: learn: 1651.7946304 total: 25.6s remaining: 3.14s
891: learn: 1651.7379241 total: 25.7s remaining: 3.11s
892: learn: 1651.6381041 total: 25.7s remaining: 3.08s
893: learn: 1651.5543011 total: 25.7s remaining: 3.05s
894: learn: 1651.4082380 total: 25.7s remaining: 3.02s
895: learn: 1651.3018491 total: 25.8s remaining: 2.99s
896: learn: 1651.2184181 total: 25.8s remaining: 2.96s
897: learn: 1651.0670820 total: 25.8s remaining: 2.93s
898: learn: 1650.9969602 total: 25.9s remaining: 2.9s
899: learn: 1650.9044331 total: 25.9s remaining: 2.88s
900: learn: 1650.7686450 total: 25.9s remaining: 2.85s
901: learn: 1650.5813984 total: 25.9s remaining: 2.82s
902: learn: 1650.4234869 total: 26s remaining: 2.79s
903: learn: 1650.2506417 total: 26s remaining: 2.76s
904: learn: 1650.1633183 total: 26s remaining: 2.73s
905: learn: 1650.0997594 total: 26.1s remaining: 2.7s
906: learn: 1650.0682819 total: 26.1s remaining: 2.67s
907: learn: 1650.0153588 total: 26.1s remaining: 2.65s
908: learn: 1649.9059947 total: 26.1s remaining: 2.62s
909: learn: 1649.8264968 total: 26.2s remaining: 2.59s
910: learn: 1649.5978754 total: 26.2s remaining: 2.56s
911: learn: 1649.4707303 total: 26.2s remaining: 2.53s
912: learn: 1649.3017910 total: 26.2s remaining: 2.5s
913: learn: 1649.1546768 total: 26.3s remaining: 2.47s
914: learn: 1649.0198965 total: 26.3s remaining: 2.44s
915: learn: 1648.8213746 total: 26.3s remaining: 2.42s
916: learn: 1648.7323331 total: 26.4s remaining: 2.39s
917: learn: 1648.7000211 total: 26.4s remaining: 2.36s
918: learn: 1648.5962317 total: 26.4s remaining: 2.33s
919: learn: 1648.5675976 total: 26.4s remaining: 2.3s
920: learn: 1648.3914200 total: 26.5s remaining: 2.27s
921: learn: 1648.2456114 total: 26.5s remaining: 2.24s
922: learn: 1648.1507975 total: 26.5s remaining: 2.21s
923: learn: 1647.9270674 total: 26.6s remaining: 2.19s
924: learn: 1647.7921343 total: 26.6s remaining: 2.16s
925: learn: 1647.7342470 total: 26.6s remaining: 2.13s
926: learn: 1647.5947141 total: 26.7s remaining: 2.1s
927: learn: 1647.4999340 total: 26.7s remaining: 2.07s
928: learn: 1647.3358331 total: 26.7s remaining: 2.04s
929: learn: 1647.2533900 total: 26.7s remaining: 2.01s
930: learn: 1647.1800533 total: 26.8s remaining: 1.98s
931: learn: 1647.0683846 total: 26.8s remaining: 1.96s
932: learn: 1646.9319154 total: 26.8s remaining: 1.93s
933: learn: 1646.8427202 total: 26.9s remaining: 1.9s
934: learn: 1646.7236418 total: 26.9s remaining: 1.87s
935: learn: 1646.6296139 total: 26.9s remaining: 1.84s
936: learn: 1646.5572947 total: 26.9s remaining: 1.81s
937: learn: 1646.5414844 total: 27s remaining: 1.78s
938: learn: 1646.4624080 total: 27s remaining: 1.75s
939: learn: 1646.3520906 total: 27s remaining: 1.72s
940: learn: 1646.2979395 total: 27.1s remaining: 1.7s
941: learn: 1646.2224518 total: 27.1s remaining: 1.67s
942: learn: 1646.0997241 total: 27.1s remaining: 1.64s
943: learn: 1645.9730185 total: 27.1s remaining: 1.61s
944: learn: 1645.8456699 total: 27.2s remaining: 1.58s
945: learn: 1645.6114672 total: 27.2s remaining: 1.55s
946: learn: 1645.5570005 total: 27.2s remaining: 1.52s
947: learn: 1645.4576812 total: 27.2s remaining: 1.49s
948: learn: 1645.3524206 total: 27.3s remaining: 1.47s
949: learn: 1645.2696627 total: 27.3s remaining: 1.44s
950: learn: 1645.1601083 total: 27.3s remaining: 1.41s
951: learn: 1645.0802337 total: 27.4s remaining: 1.38s
952: learn: 1645.0085435 total: 27.4s remaining: 1.35s
953: learn: 1644.9219069 total: 27.4s remaining: 1.32s
954: learn: 1644.8637222 total: 27.4s remaining: 1.29s
955: learn: 1644.7615230 total: 27.5s remaining: 1.26s
956: learn: 1644.6152962 total: 27.5s remaining: 1.24s
957: learn: 1644.5100186 total: 27.5s remaining: 1.21s
958: learn: 1644.3974935 total: 27.6s remaining: 1.18s
959: learn: 1644.2480453 total: 27.6s remaining: 1.15s
960: learn: 1644.1351769 total: 27.6s remaining: 1.12s
961: learn: 1643.9675842 total: 27.6s remaining: 1.09s
962: learn: 1643.8908607 total: 27.7s remaining: 1.06s
963: learn: 1643.6991177 total: 27.7s remaining: 1.03s
964: learn: 1643.6216391 total: 27.7s remaining: 1s
965: learn: 1643.5495112 total: 27.8s remaining: 977ms
966: learn: 1643.3698123 total: 27.8s remaining: 948ms
967: learn: 1643.2837147 total: 27.8s remaining: 920ms
968: learn: 1643.1484740 total: 27.9s remaining: 891ms
969: learn: 1642.9877653 total: 27.9s remaining: 862ms
970: learn: 1642.8795028 total: 27.9s remaining: 834ms
971: learn: 1642.7402413 total: 28s remaining: 805ms
972: learn: 1642.6577768 total: 28s remaining: 777ms
973: learn: 1642.5645912 total: 28s remaining: 748ms
974: learn: 1642.5039556 total: 28.1s remaining: 720ms
975: learn: 1642.3351531 total: 28.1s remaining: 691ms
976: learn: 1642.2661876 total: 28.1s remaining: 662ms
977: learn: 1642.1966485 total: 28.2s remaining: 633ms
978: learn: 1642.1281658 total: 28.2s remaining: 604ms
979: learn: 1642.0215993 total: 28.2s remaining: 576ms
980: learn: 1641.9210359 total: 28.2s remaining: 547ms
981: learn: 1641.7892111 total: 28.3s remaining: 518ms
982: learn: 1641.7338329 total: 28.3s remaining: 490ms
983: learn: 1641.5914488 total: 28.3s remaining: 461ms
984: learn: 1641.4539548 total: 28.4s remaining: 432ms
985: learn: 1641.3412646 total: 28.4s remaining: 403ms
986: learn: 1641.2610449 total: 28.4s remaining: 374ms
987: learn: 1641.1744721 total: 28.4s remaining: 345ms
988: learn: 1641.0399788 total: 28.5s remaining: 317ms
989: learn: 1640.9447331 total: 28.5s remaining: 288ms
990: learn: 1640.8411033 total: 28.5s remaining: 259ms
991: learn: 1640.7228468 total: 28.6s remaining: 230ms
992: learn: 1640.5104114 total: 28.6s remaining: 201ms
993: learn: 1640.4154939 total: 28.6s remaining: 173ms
994: learn: 1640.3175923 total: 28.6s remaining: 144ms
995: learn: 1640.1868466 total: 28.7s remaining: 115ms
996: learn: 1640.1208851 total: 28.7s remaining: 86.3ms
997: learn: 1639.9796372 total: 28.7s remaining: 57.6ms
998: learn: 1639.8431859 total: 28.8s remaining: 28.8ms
999: learn: 1639.7609384 total: 28.8s remaining: 0us
Learning rate set to 0.093467
0: learn: 4282.9492307 total: 25.7ms remaining: 25.7s
1: learn: 4037.8482936 total: 51.8ms remaining: 25.9s
2: learn: 3812.6176441 total: 79.1ms remaining: 26.3s
3: learn: 3620.5832422 total: 113ms remaining: 28.1s
4: learn: 3444.3988734 total: 138ms remaining: 27.5s
5: learn: 3287.6892789 total: 165ms remaining: 27.4s
6: learn: 3149.2705150 total: 203ms remaining: 28.9s
7: learn: 3024.1237783 total: 230ms remaining: 28.5s
8: learn: 2914.4504801 total: 257ms remaining: 28.3s
9: learn: 2815.3718302 total: 294ms remaining: 29.1s
10: learn: 2727.5566696 total: 323ms remaining: 29.1s
11: learn: 2648.8250796 total: 348ms remaining: 28.7s
12: learn: 2582.5540133 total: 379ms remaining: 28.8s
13: learn: 2522.1273439 total: 408ms remaining: 28.8s
14: learn: 2468.8227921 total: 434ms remaining: 28.5s
15: learn: 2424.2179529 total: 458ms remaining: 28.2s
16: learn: 2379.6977773 total: 493ms remaining: 28.5s
17: learn: 2341.3677909 total: 519ms remaining: 28.3s
18: learn: 2308.0389440 total: 543ms remaining: 28.1s
19: learn: 2279.2045896 total: 572ms remaining: 28s
20: learn: 2251.7404320 total: 600ms remaining: 28s
21: learn: 2227.8079454 total: 625ms remaining: 27.8s
22: learn: 2205.3679978 total: 652ms remaining: 27.7s
23: learn: 2184.6380512 total: 689ms remaining: 28s
24: learn: 2167.1413102 total: 715ms remaining: 27.9s
25: learn: 2149.0952136 total: 739ms remaining: 27.7s
26: learn: 2133.3746699 total: 772ms remaining: 27.8s
27: learn: 2120.6066184 total: 803ms remaining: 27.9s
28: learn: 2108.2313007 total: 827ms remaining: 27.7s
29: learn: 2097.4523683 total: 852ms remaining: 27.6s
30: learn: 2087.0778032 total: 886ms remaining: 27.7s
31: learn: 2078.0966150 total: 911ms remaining: 27.6s
32: learn: 2070.2326752 total: 936ms remaining: 27.4s
33: learn: 2062.4560597 total: 968ms remaining: 27.5s
34: learn: 2055.3654152 total: 997ms remaining: 27.5s
35: learn: 2049.0914207 total: 1.02s remaining: 27.4s
36: learn: 2042.3399457 total: 1.05s remaining: 27.4s
37: learn: 2035.2543233 total: 1.09s remaining: 27.5s
38: learn: 2029.1398579 total: 1.11s remaining: 27.4s
39: learn: 2023.8159225 total: 1.14s remaining: 27.4s
40: learn: 2017.1205370 total: 1.17s remaining: 27.5s
41: learn: 2012.1049585 total: 1.2s remaining: 27.3s
42: learn: 2007.6780345 total: 1.22s remaining: 27.3s
43: learn: 2003.9266793 total: 1.25s remaining: 27.3s
44: learn: 1998.6581062 total: 1.29s remaining: 27.3s
45: learn: 1993.5340250 total: 1.31s remaining: 27.2s
46: learn: 1989.7703018 total: 1.34s remaining: 27.2s
47: learn: 1986.4483472 total: 1.37s remaining: 27.2s
48: learn: 1983.7345150 total: 1.4s remaining: 27.1s
49: learn: 1980.7740621 total: 1.42s remaining: 27s
50: learn: 1977.2271100 total: 1.45s remaining: 27.1s
51: learn: 1973.3246744 total: 1.48s remaining: 27s
52: learn: 1970.8185936 total: 1.5s remaining: 26.9s
53: learn: 1968.3359956 total: 1.53s remaining: 26.8s
54: learn: 1964.1409336 total: 1.56s remaining: 26.8s
55: learn: 1960.2175255 total: 1.59s remaining: 26.8s
56: learn: 1958.2491326 total: 1.61s remaining: 26.7s
57: learn: 1956.1711996 total: 1.64s remaining: 26.7s
58: learn: 1954.5443822 total: 1.67s remaining: 26.6s
59: learn: 1949.7480279 total: 1.69s remaining: 26.5s
60: learn: 1945.9687194 total: 1.72s remaining: 26.4s
61: learn: 1943.6866736 total: 1.75s remaining: 26.5s
62: learn: 1940.2999042 total: 1.78s remaining: 26.4s
63: learn: 1938.6826442 total: 1.8s remaining: 26.3s
64: learn: 1937.0476886 total: 1.83s remaining: 26.3s
65: learn: 1935.4056837 total: 1.86s remaining: 26.3s
66: learn: 1933.7006351 total: 1.88s remaining: 26.2s
67: learn: 1931.8845036 total: 1.9s remaining: 26.1s
68: learn: 1929.5118349 total: 1.94s remaining: 26.2s
69: learn: 1927.7565178 total: 1.97s remaining: 26.1s
70: learn: 1924.0771990 total: 1.99s remaining: 26.1s
71: learn: 1921.6224265 total: 2.02s remaining: 26.1s
72: learn: 1919.9103274 total: 2.05s remaining: 26s
73: learn: 1917.5701110 total: 2.07s remaining: 26s
74: learn: 1915.6766396 total: 2.1s remaining: 25.9s
75: learn: 1914.0275496 total: 2.14s remaining: 26s
76: learn: 1911.4751345 total: 2.16s remaining: 25.9s
77: learn: 1910.4993908 total: 2.18s remaining: 25.8s
78: learn: 1908.9887519 total: 2.21s remaining: 25.8s
79: learn: 1907.0080901 total: 2.24s remaining: 25.7s
80: learn: 1905.1414714 total: 2.26s remaining: 25.7s
81: learn: 1903.4216483 total: 2.29s remaining: 25.6s
82: learn: 1901.0869488 total: 2.33s remaining: 25.7s
83: learn: 1898.4072913 total: 2.35s remaining: 25.7s
84: learn: 1896.7893324 total: 2.38s remaining: 25.6s
85: learn: 1895.7525685 total: 2.41s remaining: 25.6s
86: learn: 1894.4420679 total: 2.43s remaining: 25.5s
87: learn: 1892.5427785 total: 2.46s remaining: 25.5s
88: learn: 1891.2607146 total: 2.48s remaining: 25.4s
89: learn: 1889.7245399 total: 2.52s remaining: 25.4s
90: learn: 1887.8295453 total: 2.54s remaining: 25.4s
91: learn: 1887.0189579 total: 2.56s remaining: 25.3s
92: learn: 1886.0819412 total: 2.59s remaining: 25.3s
93: learn: 1884.7883595 total: 2.62s remaining: 25.3s
94: learn: 1883.7052444 total: 2.65s remaining: 25.2s
95: learn: 1882.3708223 total: 2.67s remaining: 25.2s
96: learn: 1881.5368103 total: 2.71s remaining: 25.2s
97: learn: 1880.7402856 total: 2.73s remaining: 25.1s
98: learn: 1879.3663249 total: 2.76s remaining: 25.1s
99: learn: 1877.9862328 total: 2.79s remaining: 25.2s
100: learn: 1876.4766445 total: 2.82s remaining: 25.1s
101: learn: 1875.3010950 total: 2.85s remaining: 25.1s
102: learn: 1874.5189999 total: 2.87s remaining: 25s
103: learn: 1873.0737277 total: 2.9s remaining: 25s
104: learn: 1871.0835708 total: 2.93s remaining: 25s
105: learn: 1870.4235872 total: 2.95s remaining: 24.9s
106: learn: 1869.1242222 total: 2.99s remaining: 25s
107: learn: 1867.8385222 total: 3.02s remaining: 24.9s
108: learn: 1866.7979293 total: 3.04s remaining: 24.8s
109: learn: 1865.7111149 total: 3.07s remaining: 24.9s
110: learn: 1864.4976533 total: 3.1s remaining: 24.9s
111: learn: 1863.5048890 total: 3.13s remaining: 24.8s
112: learn: 1862.0700180 total: 3.16s remaining: 24.8s
113: learn: 1861.0290414 total: 3.19s remaining: 24.8s
114: learn: 1860.4285048 total: 3.22s remaining: 24.8s
115: learn: 1859.3929543 total: 3.24s remaining: 24.7s
116: learn: 1858.6064304 total: 3.27s remaining: 24.7s
117: learn: 1857.4365070 total: 3.3s remaining: 24.7s
118: learn: 1856.2225656 total: 3.32s remaining: 24.6s
119: learn: 1855.4000919 total: 3.35s remaining: 24.5s
120: learn: 1854.7534103 total: 3.38s remaining: 24.5s
121: learn: 1853.9929664 total: 3.4s remaining: 24.5s
122: learn: 1852.6684254 total: 3.43s remaining: 24.4s
123: learn: 1851.8222836 total: 3.46s remaining: 24.4s
124: learn: 1851.2519849 total: 3.48s remaining: 24.4s
125: learn: 1850.2853774 total: 3.51s remaining: 24.3s
126: learn: 1849.6968795 total: 3.53s remaining: 24.3s
127: learn: 1849.1208581 total: 3.57s remaining: 24.3s
128: learn: 1847.8908737 total: 3.59s remaining: 24.3s
129: learn: 1847.1416009 total: 3.62s remaining: 24.2s
130: learn: 1846.0172831 total: 3.65s remaining: 24.2s
131: learn: 1845.4145415 total: 3.67s remaining: 24.2s
132: learn: 1844.6967352 total: 3.7s remaining: 24.1s
133: learn: 1843.5002376 total: 3.73s remaining: 24.1s
134: learn: 1842.2851067 total: 3.76s remaining: 24.1s
135: learn: 1841.7587258 total: 3.78s remaining: 24s
136: learn: 1841.1246120 total: 3.81s remaining: 24s
137: learn: 1840.5250265 total: 3.83s remaining: 23.9s
138: learn: 1840.1041298 total: 3.86s remaining: 23.9s
139: learn: 1839.1149943 total: 3.89s remaining: 23.9s
140: learn: 1838.1306163 total: 3.91s remaining: 23.8s
141: learn: 1837.5679478 total: 3.95s remaining: 23.9s
142: learn: 1836.5901097 total: 3.98s remaining: 23.8s
143: learn: 1835.8054508 total: 4s remaining: 23.8s
144: learn: 1835.0600775 total: 4.03s remaining: 23.8s
145: learn: 1834.0306817 total: 4.06s remaining: 23.8s
146: learn: 1833.4113796 total: 4.09s remaining: 23.7s
147: learn: 1832.6287063 total: 4.11s remaining: 23.7s
148: learn: 1832.1961176 total: 4.14s remaining: 23.7s
149: learn: 1831.6029309 total: 4.17s remaining: 23.6s
150: learn: 1830.7185196 total: 4.2s remaining: 23.6s
151: learn: 1829.8034132 total: 4.22s remaining: 23.6s
152: learn: 1829.3243745 total: 4.25s remaining: 23.6s
153: learn: 1827.9692209 total: 4.28s remaining: 23.5s
154: learn: 1827.3008351 total: 4.3s remaining: 23.5s
155: learn: 1826.2318173 total: 4.34s remaining: 23.5s
156: learn: 1825.6840640 total: 4.37s remaining: 23.4s
157: learn: 1825.0874346 total: 4.39s remaining: 23.4s
158: learn: 1824.5984914 total: 4.42s remaining: 23.4s
159: learn: 1823.9083937 total: 4.44s remaining: 23.3s
160: learn: 1823.1856171 total: 4.47s remaining: 23.3s
161: learn: 1822.7653690 total: 4.49s remaining: 23.2s
162: learn: 1822.0870253 total: 4.52s remaining: 23.2s
163: learn: 1821.4882303 total: 4.55s remaining: 23.2s
164: learn: 1820.3610661 total: 4.58s remaining: 23.2s
165: learn: 1819.8016593 total: 4.6s remaining: 23.1s
166: learn: 1819.1002075 total: 4.64s remaining: 23.1s
167: learn: 1818.3334014 total: 4.66s remaining: 23.1s
168: learn: 1817.2853736 total: 4.69s remaining: 23s
169: learn: 1816.8276125 total: 4.72s remaining: 23s
170: learn: 1815.9109038 total: 4.75s remaining: 23s
171: learn: 1815.4504422 total: 4.77s remaining: 23s
172: learn: 1814.6231119 total: 4.8s remaining: 22.9s
173: learn: 1814.3053671 total: 4.83s remaining: 22.9s
174: learn: 1813.8331893 total: 4.85s remaining: 22.9s
175: learn: 1812.6997531 total: 4.88s remaining: 22.8s
176: learn: 1812.0022859 total: 4.91s remaining: 22.8s
177: learn: 1811.2716173 total: 4.93s remaining: 22.8s
178: learn: 1810.7431976 total: 4.96s remaining: 22.7s
179: learn: 1810.1522438 total: 4.98s remaining: 22.7s
180: learn: 1809.3601292 total: 5.02s remaining: 22.7s
181: learn: 1808.8991431 total: 5.04s remaining: 22.7s
182: learn: 1808.3372812 total: 5.07s remaining: 22.6s
183: learn: 1807.5713197 total: 5.1s remaining: 22.6s
184: learn: 1807.1572558 total: 5.13s remaining: 22.6s
185: learn: 1806.6754271 total: 5.15s remaining: 22.5s
186: learn: 1805.8923991 total: 5.18s remaining: 22.5s
187: learn: 1805.1936020 total: 5.21s remaining: 22.5s
188: learn: 1804.8713285 total: 5.24s remaining: 22.5s
189: learn: 1804.1868011 total: 5.26s remaining: 22.4s
190: learn: 1803.8686040 total: 5.29s remaining: 22.4s
191: learn: 1803.0046225 total: 5.31s remaining: 22.4s
192: learn: 1802.4563049 total: 5.34s remaining: 22.3s
193: learn: 1802.0407852 total: 5.36s remaining: 22.3s
194: learn: 1801.3666526 total: 5.4s remaining: 22.3s
195: learn: 1800.9489950 total: 5.42s remaining: 22.2s
196: learn: 1800.2623932 total: 5.45s remaining: 22.2s
197: learn: 1799.6822213 total: 5.48s remaining: 22.2s
198: learn: 1799.2411532 total: 5.51s remaining: 22.2s
199: learn: 1798.6838820 total: 5.53s remaining: 22.1s
200: learn: 1798.3085481 total: 5.56s remaining: 22.1s
201: learn: 1797.8592960 total: 5.59s remaining: 22.1s
202: learn: 1797.2333505 total: 5.62s remaining: 22.1s
203: learn: 1796.7948060 total: 5.64s remaining: 22s
204: learn: 1796.2169892 total: 5.66s remaining: 22s
205: learn: 1795.5262734 total: 5.7s remaining: 22s
206: learn: 1794.9331048 total: 5.73s remaining: 21.9s
207: learn: 1794.4337976 total: 5.75s remaining: 21.9s
208: learn: 1794.0644945 total: 5.78s remaining: 21.9s
209: learn: 1793.2867453 total: 5.81s remaining: 21.9s
210: learn: 1792.8892847 total: 5.83s remaining: 21.8s
211: learn: 1792.0766933 total: 5.86s remaining: 21.8s
212: learn: 1791.7437017 total: 5.89s remaining: 21.8s
213: learn: 1791.3993162 total: 5.92s remaining: 21.7s
214: learn: 1790.9304081 total: 5.94s remaining: 21.7s
215: learn: 1790.4859097 total: 5.98s remaining: 21.7s
216: learn: 1790.0678677 total: 6s remaining: 21.7s
217: learn: 1789.7304470 total: 6.03s remaining: 21.6s
218: learn: 1789.2976599 total: 6.06s remaining: 21.6s
219: learn: 1788.6308659 total: 6.09s remaining: 21.6s
220: learn: 1788.2698633 total: 6.12s remaining: 21.6s
221: learn: 1787.9033616 total: 6.14s remaining: 21.5s
222: learn: 1787.5035410 total: 6.17s remaining: 21.5s
223: learn: 1786.8635343 total: 6.21s remaining: 21.5s
224: learn: 1786.3455545 total: 6.23s remaining: 21.5s
225: learn: 1785.9098402 total: 6.26s remaining: 21.4s
226: learn: 1785.6854240 total: 6.29s remaining: 21.4s
227: learn: 1785.2745977 total: 6.31s remaining: 21.4s
228: learn: 1784.7953540 total: 6.34s remaining: 21.3s
229: learn: 1784.4379239 total: 6.37s remaining: 21.3s
230: learn: 1783.6009750 total: 6.39s remaining: 21.3s
231: learn: 1783.3292475 total: 6.42s remaining: 21.2s
232: learn: 1782.7320356 total: 6.44s remaining: 21.2s
233: learn: 1782.1025310 total: 6.47s remaining: 21.2s
234: learn: 1781.4405915 total: 6.5s remaining: 21.2s
235: learn: 1780.9843767 total: 6.53s remaining: 21.1s
236: learn: 1780.5731624 total: 6.55s remaining: 21.1s
237: learn: 1780.0191647 total: 6.58s remaining: 21.1s
238: learn: 1779.3620790 total: 6.61s remaining: 21s
239: learn: 1778.9800087 total: 6.63s remaining: 21s
240: learn: 1778.5255396 total: 6.67s remaining: 21s
241: learn: 1777.9634795 total: 6.69s remaining: 21s
242: learn: 1777.5835059 total: 6.71s remaining: 20.9s
243: learn: 1777.1596292 total: 6.74s remaining: 20.9s
244: learn: 1776.7976563 total: 6.77s remaining: 20.9s
245: learn: 1776.3479597 total: 6.79s remaining: 20.8s
246: learn: 1775.9115537 total: 6.82s remaining: 20.8s
247: learn: 1775.4388874 total: 6.85s remaining: 20.8s
248: learn: 1775.0228709 total: 6.87s remaining: 20.7s
249: learn: 1774.6464504 total: 6.9s remaining: 20.7s
250: learn: 1774.3154518 total: 6.92s remaining: 20.7s
251: learn: 1773.9476890 total: 6.95s remaining: 20.6s
252: learn: 1773.6462742 total: 6.98s remaining: 20.6s
253: learn: 1773.2479389 total: 7s remaining: 20.6s
254: learn: 1772.8650657 total: 7.02s remaining: 20.5s
255: learn: 1772.5674666 total: 7.06s remaining: 20.5s
256: learn: 1772.2338069 total: 7.08s remaining: 20.5s
257: learn: 1771.9012816 total: 7.11s remaining: 20.4s
258: learn: 1771.4734818 total: 7.13s remaining: 20.4s
259: learn: 1770.8970008 total: 7.16s remaining: 20.4s
260: learn: 1770.2556799 total: 7.18s remaining: 20.3s
261: learn: 1769.7584170 total: 7.21s remaining: 20.3s
262: learn: 1769.3680975 total: 7.24s remaining: 20.3s
263: learn: 1768.9075991 total: 7.28s remaining: 20.3s
264: learn: 1768.6080317 total: 7.31s remaining: 20.3s
265: learn: 1768.3378164 total: 7.34s remaining: 20.3s
266: learn: 1767.9806405 total: 7.37s remaining: 20.2s
267: learn: 1767.7095376 total: 7.39s remaining: 20.2s
268: learn: 1767.2393662 total: 7.42s remaining: 20.2s
269: learn: 1766.8669346 total: 7.45s remaining: 20.1s
270: learn: 1766.3543330 total: 7.47s remaining: 20.1s
271: learn: 1766.0684958 total: 7.5s remaining: 20.1s
272: learn: 1765.7424881 total: 7.52s remaining: 20s
273: learn: 1765.2965361 total: 7.55s remaining: 20s
274: learn: 1764.8385916 total: 7.57s remaining: 20s
275: learn: 1764.6104131 total: 7.59s remaining: 19.9s
276: learn: 1764.2147988 total: 7.63s remaining: 19.9s
277: learn: 1763.8849534 total: 7.65s remaining: 19.9s
278: learn: 1763.6093157 total: 7.68s remaining: 19.8s
279: learn: 1763.3217212 total: 7.71s remaining: 19.8s
280: learn: 1763.0541650 total: 7.75s remaining: 19.8s
281: learn: 1762.7089347 total: 7.77s remaining: 19.8s
282: learn: 1762.2759285 total: 7.81s remaining: 19.8s
283: learn: 1761.9672630 total: 7.84s remaining: 19.8s
284: learn: 1761.6514470 total: 7.87s remaining: 19.8s
285: learn: 1761.3743073 total: 7.9s remaining: 19.7s
286: learn: 1761.0459916 total: 7.93s remaining: 19.7s
287: learn: 1760.5625524 total: 7.96s remaining: 19.7s
288: learn: 1760.2742725 total: 7.99s remaining: 19.7s
289: learn: 1759.9626341 total: 8.02s remaining: 19.6s
290: learn: 1759.7559271 total: 8.05s remaining: 19.6s
291: learn: 1759.4960092 total: 8.08s remaining: 19.6s
292: learn: 1758.9642799 total: 8.11s remaining: 19.6s
293: learn: 1758.7006228 total: 8.14s remaining: 19.5s
294: learn: 1758.4881178 total: 8.16s remaining: 19.5s
295: learn: 1758.2277685 total: 8.2s remaining: 19.5s
296: learn: 1757.8294939 total: 8.23s remaining: 19.5s
297: learn: 1757.3568416 total: 8.25s remaining: 19.4s
298: learn: 1757.0153342 total: 8.28s remaining: 19.4s
299: learn: 1756.8772711 total: 8.31s remaining: 19.4s
300: learn: 1756.6136064 total: 8.33s remaining: 19.4s
301: learn: 1756.4068961 total: 8.36s remaining: 19.3s
302: learn: 1756.1395872 total: 8.39s remaining: 19.3s
303: learn: 1755.9052854 total: 8.41s remaining: 19.3s
304: learn: 1755.5612668 total: 8.44s remaining: 19.2s
305: learn: 1755.3670391 total: 8.47s remaining: 19.2s
306: learn: 1755.1512014 total: 8.5s remaining: 19.2s
307: learn: 1754.9033623 total: 8.53s remaining: 19.2s
308: learn: 1754.5511231 total: 8.55s remaining: 19.1s
309: learn: 1754.2037555 total: 8.58s remaining: 19.1s
310: learn: 1753.7069245 total: 8.61s remaining: 19.1s
311: learn: 1753.5299129 total: 8.63s remaining: 19s
312: learn: 1753.3049508 total: 8.66s remaining: 19s
313: learn: 1752.9848942 total: 8.69s remaining: 19s
314: learn: 1752.5752357 total: 8.71s remaining: 18.9s
315: learn: 1752.3617696 total: 8.73s remaining: 18.9s
316: learn: 1752.1624868 total: 8.76s remaining: 18.9s
317: learn: 1751.9985216 total: 8.79s remaining: 18.9s
318: learn: 1751.7211885 total: 8.81s remaining: 18.8s
319: learn: 1751.4509047 total: 8.84s remaining: 18.8s
320: learn: 1751.0279461 total: 8.87s remaining: 18.8s
321: learn: 1750.9292577 total: 8.9s remaining: 18.7s
322: learn: 1750.4836956 total: 8.92s remaining: 18.7s
323: learn: 1750.2786102 total: 8.94s remaining: 18.7s
324: learn: 1750.0253426 total: 8.97s remaining: 18.6s
325: learn: 1749.7014227 total: 9s remaining: 18.6s
326: learn: 1749.3579980 total: 9.02s remaining: 18.6s
327: learn: 1749.1449241 total: 9.05s remaining: 18.5s
328: learn: 1748.9527583 total: 9.09s remaining: 18.5s
329: learn: 1748.5723199 total: 9.11s remaining: 18.5s
330: learn: 1748.2552727 total: 9.14s remaining: 18.5s
331: learn: 1748.0239272 total: 9.17s remaining: 18.4s
332: learn: 1747.7783560 total: 9.19s remaining: 18.4s
333: learn: 1747.5235725 total: 9.21s remaining: 18.4s
334: learn: 1747.0924591 total: 9.24s remaining: 18.3s
335: learn: 1746.8859588 total: 9.27s remaining: 18.3s
336: learn: 1746.7162236 total: 9.29s remaining: 18.3s
337: learn: 1746.4385357 total: 9.32s remaining: 18.3s
338: learn: 1746.0759789 total: 9.35s remaining: 18.2s
339: learn: 1745.7795302 total: 9.38s remaining: 18.2s
340: learn: 1745.4609833 total: 9.4s remaining: 18.2s
341: learn: 1745.3033143 total: 9.43s remaining: 18.1s
342: learn: 1744.9151421 total: 9.46s remaining: 18.1s
343: learn: 1744.7039257 total: 9.49s remaining: 18.1s
344: learn: 1744.1836669 total: 9.51s remaining: 18.1s
345: learn: 1743.8780078 total: 9.54s remaining: 18s
346: learn: 1743.5843683 total: 9.57s remaining: 18s
347: learn: 1743.2884758 total: 9.59s remaining: 18s
348: learn: 1743.0767962 total: 9.62s remaining: 17.9s
349: learn: 1742.7512049 total: 9.66s remaining: 17.9s
350: learn: 1742.6366156 total: 9.68s remaining: 17.9s
351: learn: 1742.5068919 total: 9.7s remaining: 17.9s
352: learn: 1742.1471300 total: 9.73s remaining: 17.8s
353: learn: 1741.6437819 total: 9.76s remaining: 17.8s
354: learn: 1741.4263857 total: 9.79s remaining: 17.8s
355: learn: 1741.0281640 total: 9.81s remaining: 17.8s
356: learn: 1740.5947251 total: 9.85s remaining: 17.7s
357: learn: 1740.1266566 total: 9.88s remaining: 17.7s
358: learn: 1739.8108850 total: 9.9s remaining: 17.7s
359: learn: 1739.4114025 total: 9.93s remaining: 17.7s
360: learn: 1739.0978682 total: 9.96s remaining: 17.6s
361: learn: 1738.7615356 total: 9.98s remaining: 17.6s
362: learn: 1738.5360360 total: 10s remaining: 17.6s
363: learn: 1738.2583301 total: 10.1s remaining: 17.6s
364: learn: 1738.0745429 total: 10.1s remaining: 17.5s
365: learn: 1737.7328847 total: 10.1s remaining: 17.5s
366: learn: 1737.6112975 total: 10.1s remaining: 17.5s
367: learn: 1737.4764393 total: 10.2s remaining: 17.4s
368: learn: 1737.3503701 total: 10.2s remaining: 17.4s
369: learn: 1737.1171423 total: 10.2s remaining: 17.4s
370: learn: 1736.8809626 total: 10.2s remaining: 17.3s
371: learn: 1736.7180739 total: 10.3s remaining: 17.3s
372: learn: 1736.4859108 total: 10.3s remaining: 17.3s
373: learn: 1736.3103022 total: 10.3s remaining: 17.2s
374: learn: 1736.1366438 total: 10.3s remaining: 17.2s
375: learn: 1735.8144530 total: 10.4s remaining: 17.2s
376: learn: 1735.3876077 total: 10.4s remaining: 17.1s
377: learn: 1735.2836293 total: 10.4s remaining: 17.1s
378: learn: 1734.9374181 total: 10.4s remaining: 17.1s
379: learn: 1734.4593080 total: 10.5s remaining: 17.1s
380: learn: 1734.2978355 total: 10.5s remaining: 17s
381: learn: 1733.9003675 total: 10.5s remaining: 17s
382: learn: 1733.7659461 total: 10.5s remaining: 17s
383: learn: 1733.4965610 total: 10.6s remaining: 16.9s
384: learn: 1733.3631396 total: 10.6s remaining: 16.9s
385: learn: 1733.2221146 total: 10.6s remaining: 16.9s
386: learn: 1733.0819943 total: 10.6s remaining: 16.9s
387: learn: 1732.9293179 total: 10.7s remaining: 16.8s
388: learn: 1732.6974738 total: 10.7s remaining: 16.8s
389: learn: 1732.3199615 total: 10.7s remaining: 16.8s
390: learn: 1731.9007469 total: 10.8s remaining: 16.8s
391: learn: 1731.6555670 total: 10.8s remaining: 16.7s
392: learn: 1731.4969308 total: 10.8s remaining: 16.7s
393: learn: 1731.3130533 total: 10.8s remaining: 16.7s
394: learn: 1731.1478241 total: 10.9s remaining: 16.6s
395: learn: 1730.7968243 total: 10.9s remaining: 16.6s
396: learn: 1730.5189885 total: 10.9s remaining: 16.6s
397: learn: 1730.1432094 total: 10.9s remaining: 16.6s
398: learn: 1729.9289134 total: 11s remaining: 16.5s
399: learn: 1729.6498096 total: 11s remaining: 16.5s
400: learn: 1729.4930944 total: 11s remaining: 16.5s
401: learn: 1728.9555937 total: 11.1s remaining: 16.5s
402: learn: 1728.7575793 total: 11.1s remaining: 16.4s
403: learn: 1728.5043729 total: 11.1s remaining: 16.4s
404: learn: 1728.2045535 total: 11.1s remaining: 16.4s
405: learn: 1727.8305892 total: 11.2s remaining: 16.3s
406: learn: 1727.5135617 total: 11.2s remaining: 16.3s
407: learn: 1727.3962769 total: 11.2s remaining: 16.3s
408: learn: 1727.1988336 total: 11.3s remaining: 16.3s
409: learn: 1726.9806291 total: 11.3s remaining: 16.2s
410: learn: 1726.8093032 total: 11.3s remaining: 16.2s
411: learn: 1726.4934766 total: 11.3s remaining: 16.2s
412: learn: 1726.1975866 total: 11.4s remaining: 16.2s
413: learn: 1725.9244857 total: 11.4s remaining: 16.1s
414: learn: 1725.7148752 total: 11.4s remaining: 16.1s
415: learn: 1725.4719681 total: 11.5s remaining: 16.1s
416: learn: 1725.2299478 total: 11.5s remaining: 16s
417: learn: 1724.7925840 total: 11.5s remaining: 16s
418: learn: 1724.6719934 total: 11.5s remaining: 16s
419: learn: 1724.4931970 total: 11.6s remaining: 16s
420: learn: 1724.2689577 total: 11.6s remaining: 15.9s
421: learn: 1724.0641019 total: 11.6s remaining: 15.9s
422: learn: 1723.8415852 total: 11.6s remaining: 15.9s
423: learn: 1723.6341401 total: 11.7s remaining: 15.9s
424: learn: 1723.4085544 total: 11.7s remaining: 15.8s
425: learn: 1722.9245918 total: 11.7s remaining: 15.8s
426: learn: 1722.6787413 total: 11.8s remaining: 15.8s
427: learn: 1722.3815308 total: 11.8s remaining: 15.8s
428: learn: 1722.1348411 total: 11.8s remaining: 15.7s
429: learn: 1721.8787159 total: 11.8s remaining: 15.7s
430: learn: 1721.6300346 total: 11.9s remaining: 15.7s
431: learn: 1721.4944354 total: 11.9s remaining: 15.6s
432: learn: 1721.3482085 total: 11.9s remaining: 15.6s
433: learn: 1721.1085743 total: 11.9s remaining: 15.6s
434: learn: 1720.9446670 total: 12s remaining: 15.5s
435: learn: 1720.7707373 total: 12s remaining: 15.5s
436: learn: 1720.5052117 total: 12s remaining: 15.5s
437: learn: 1720.3804160 total: 12.1s remaining: 15.5s
438: learn: 1720.1800582 total: 12.1s remaining: 15.4s
439: learn: 1719.8706799 total: 12.1s remaining: 15.4s
440: learn: 1719.7073979 total: 12.1s remaining: 15.4s
441: learn: 1719.5420037 total: 12.2s remaining: 15.3s
442: learn: 1719.4227825 total: 12.2s remaining: 15.3s
443: learn: 1719.2770143 total: 12.2s remaining: 15.3s
444: learn: 1719.1109865 total: 12.2s remaining: 15.3s
445: learn: 1718.8693794 total: 12.3s remaining: 15.2s
446: learn: 1718.5897098 total: 12.3s remaining: 15.2s
447: learn: 1718.3365152 total: 12.3s remaining: 15.2s
448: learn: 1718.0371003 total: 12.3s remaining: 15.1s
449: learn: 1717.8990796 total: 12.4s remaining: 15.1s
450: learn: 1717.6102658 total: 12.4s remaining: 15.1s
451: learn: 1717.4586360 total: 12.4s remaining: 15.1s
452: learn: 1717.1594577 total: 12.5s remaining: 15s
453: learn: 1716.9329324 total: 12.5s remaining: 15s
454: learn: 1716.5932167 total: 12.5s remaining: 15s
455: learn: 1716.3710059 total: 12.5s remaining: 14.9s
456: learn: 1716.2233376 total: 12.6s remaining: 14.9s
457: learn: 1716.0142021 total: 12.6s remaining: 14.9s
458: learn: 1715.6628533 total: 12.6s remaining: 14.9s
459: learn: 1715.4418455 total: 12.6s remaining: 14.8s
460: learn: 1715.0968546 total: 12.7s remaining: 14.8s
461: learn: 1714.9546329 total: 12.7s remaining: 14.8s
462: learn: 1714.6543210 total: 12.7s remaining: 14.8s
463: learn: 1714.3815694 total: 12.8s remaining: 14.7s
464: learn: 1714.0692509 total: 12.8s remaining: 14.7s
465: learn: 1713.8464687 total: 12.8s remaining: 14.7s
466: learn: 1713.6821941 total: 12.8s remaining: 14.6s
467: learn: 1713.3773955 total: 12.9s remaining: 14.6s
468: learn: 1713.0548536 total: 12.9s remaining: 14.6s
469: learn: 1712.8247296 total: 12.9s remaining: 14.6s
470: learn: 1712.6117092 total: 12.9s remaining: 14.5s
471: learn: 1712.4307772 total: 13s remaining: 14.5s
472: learn: 1712.1721127 total: 13s remaining: 14.5s
473: learn: 1712.0492464 total: 13s remaining: 14.4s
474: learn: 1711.8558267 total: 13s remaining: 14.4s
475: learn: 1711.6646075 total: 13.1s remaining: 14.4s
476: learn: 1711.5512330 total: 13.1s remaining: 14.3s
477: learn: 1711.3264689 total: 13.1s remaining: 14.3s
478: learn: 1711.0536369 total: 13.1s remaining: 14.3s
479: learn: 1710.8733505 total: 13.2s remaining: 14.3s
480: learn: 1710.7170419 total: 13.2s remaining: 14.2s
481: learn: 1710.5616064 total: 13.2s remaining: 14.2s
482: learn: 1710.2800168 total: 13.3s remaining: 14.2s
483: learn: 1710.2192052 total: 13.3s remaining: 14.2s
484: learn: 1710.1138949 total: 13.3s remaining: 14.1s
485: learn: 1709.9354447 total: 13.3s remaining: 14.1s
486: learn: 1709.5957803 total: 13.4s remaining: 14.1s
487: learn: 1709.5334700 total: 13.4s remaining: 14s
488: learn: 1709.2605878 total: 13.4s remaining: 14s
489: learn: 1709.0422134 total: 13.4s remaining: 14s
490: learn: 1708.8949075 total: 13.5s remaining: 14s
491: learn: 1708.7711117 total: 13.5s remaining: 13.9s
492: learn: 1708.5042672 total: 13.5s remaining: 13.9s
493: learn: 1708.2595509 total: 13.5s remaining: 13.9s
494: learn: 1707.8056889 total: 13.6s remaining: 13.8s
495: learn: 1707.6423206 total: 13.6s remaining: 13.8s
496: learn: 1707.4865548 total: 13.6s remaining: 13.8s
497: learn: 1707.1568491 total: 13.7s remaining: 13.8s
498: learn: 1707.0241469 total: 13.7s remaining: 13.7s
499: learn: 1706.6301897 total: 13.7s remaining: 13.7s
500: learn: 1706.2981094 total: 13.7s remaining: 13.7s
501: learn: 1706.0470225 total: 13.8s remaining: 13.7s
502: learn: 1705.8845399 total: 13.8s remaining: 13.6s
503: learn: 1705.7685534 total: 13.8s remaining: 13.6s
504: learn: 1705.4282936 total: 13.8s remaining: 13.6s
505: learn: 1705.2222597 total: 13.9s remaining: 13.5s
506: learn: 1705.0372368 total: 13.9s remaining: 13.5s
507: learn: 1704.7586434 total: 13.9s remaining: 13.5s
508: learn: 1704.5042917 total: 14s remaining: 13.5s
509: learn: 1704.2855451 total: 14s remaining: 13.4s
510: learn: 1704.1428920 total: 14s remaining: 13.4s
511: learn: 1703.8975433 total: 14s remaining: 13.4s
512: learn: 1703.7575624 total: 14.1s remaining: 13.3s
513: learn: 1703.7036885 total: 14.1s remaining: 13.3s
514: learn: 1703.4694841 total: 14.1s remaining: 13.3s
515: learn: 1703.2374962 total: 14.1s remaining: 13.3s
516: learn: 1703.0022965 total: 14.2s remaining: 13.2s
517: learn: 1702.7031413 total: 14.2s remaining: 13.2s
518: learn: 1702.5767344 total: 14.2s remaining: 13.2s
519: learn: 1702.3903004 total: 14.2s remaining: 13.1s
520: learn: 1702.2317931 total: 14.3s remaining: 13.1s
521: learn: 1702.1184789 total: 14.3s remaining: 13.1s
522: learn: 1701.8932253 total: 14.3s remaining: 13.1s
523: learn: 1701.7559379 total: 14.3s remaining: 13s
524: learn: 1701.6124239 total: 14.4s remaining: 13s
525: learn: 1701.4700053 total: 14.4s remaining: 13s
526: learn: 1701.2880035 total: 14.4s remaining: 12.9s
527: learn: 1701.0779707 total: 14.5s remaining: 12.9s
528: learn: 1700.8311593 total: 14.5s remaining: 12.9s
529: learn: 1700.6975137 total: 14.5s remaining: 12.9s
530: learn: 1700.4380575 total: 14.5s remaining: 12.8s
531: learn: 1700.1624460 total: 14.6s remaining: 12.8s
532: learn: 1699.9509639 total: 14.6s remaining: 12.8s
533: learn: 1699.7413970 total: 14.6s remaining: 12.8s
534: learn: 1699.4896568 total: 14.6s remaining: 12.7s
535: learn: 1699.2330325 total: 14.7s remaining: 12.7s
536: learn: 1699.0548749 total: 14.7s remaining: 12.7s
537: learn: 1698.8959378 total: 14.7s remaining: 12.7s
538: learn: 1698.5298020 total: 14.8s remaining: 12.6s
539: learn: 1698.3905353 total: 14.8s remaining: 12.6s
540: learn: 1698.2555344 total: 14.8s remaining: 12.6s
541: learn: 1698.0311315 total: 14.9s remaining: 12.6s
542: learn: 1697.8976375 total: 14.9s remaining: 12.5s
543: learn: 1697.6364774 total: 14.9s remaining: 12.5s
544: learn: 1697.4588254 total: 14.9s remaining: 12.5s
545: learn: 1697.2500396 total: 15s remaining: 12.4s
546: learn: 1697.1403952 total: 15s remaining: 12.4s
547: learn: 1696.9579471 total: 15s remaining: 12.4s
548: learn: 1696.7916390 total: 15s remaining: 12.4s
549: learn: 1696.6695560 total: 15.1s remaining: 12.3s
550: learn: 1696.5002606 total: 15.1s remaining: 12.3s
551: learn: 1696.2396394 total: 15.1s remaining: 12.3s
552: learn: 1696.1276240 total: 15.1s remaining: 12.2s
553: learn: 1695.8474132 total: 15.2s remaining: 12.2s
554: learn: 1695.6476378 total: 15.2s remaining: 12.2s
555: learn: 1695.4936487 total: 15.2s remaining: 12.2s
556: learn: 1695.3517891 total: 15.3s remaining: 12.1s
557: learn: 1695.1084149 total: 15.3s remaining: 12.1s
558: learn: 1694.8433818 total: 15.3s remaining: 12.1s
559: learn: 1694.7256051 total: 15.3s remaining: 12.1s
560: learn: 1694.5787690 total: 15.4s remaining: 12s
561: learn: 1694.3435862 total: 15.4s remaining: 12s
562: learn: 1694.1094830 total: 15.4s remaining: 12s
563: learn: 1693.9540094 total: 15.4s remaining: 11.9s
564: learn: 1693.8760746 total: 15.5s remaining: 11.9s
565: learn: 1693.6528482 total: 15.5s remaining: 11.9s
566: learn: 1693.5373027 total: 15.5s remaining: 11.9s
567: learn: 1693.2885963 total: 15.6s remaining: 11.8s
568: learn: 1693.1515071 total: 15.6s remaining: 11.8s
569: learn: 1693.0181247 total: 15.6s remaining: 11.8s
570: learn: 1692.7950900 total: 15.7s remaining: 11.8s
571: learn: 1692.5733039 total: 15.7s remaining: 11.7s
572: learn: 1692.4804245 total: 15.7s remaining: 11.7s
573: learn: 1692.4119178 total: 15.7s remaining: 11.7s
574: learn: 1692.2669883 total: 15.8s remaining: 11.7s
575: learn: 1692.1416000 total: 15.8s remaining: 11.6s
576: learn: 1692.0240794 total: 15.8s remaining: 11.6s
577: learn: 1691.8315820 total: 15.8s remaining: 11.6s
578: learn: 1691.6072952 total: 15.9s remaining: 11.5s
579: learn: 1691.4590553 total: 15.9s remaining: 11.5s
580: learn: 1691.1516759 total: 15.9s remaining: 11.5s
581: learn: 1690.8737645 total: 16s remaining: 11.5s
582: learn: 1690.7560860 total: 16s remaining: 11.4s
583: learn: 1690.5966426 total: 16s remaining: 11.4s
584: learn: 1690.4559600 total: 16.1s remaining: 11.4s
585: learn: 1690.3298858 total: 16.1s remaining: 11.4s
586: learn: 1690.1355632 total: 16.1s remaining: 11.3s
587: learn: 1689.8833008 total: 16.1s remaining: 11.3s
588: learn: 1689.7284970 total: 16.2s remaining: 11.3s
589: learn: 1689.5454680 total: 16.2s remaining: 11.2s
590: learn: 1689.2156067 total: 16.2s remaining: 11.2s
591: learn: 1689.0134942 total: 16.2s remaining: 11.2s
592: learn: 1688.8437005 total: 16.3s remaining: 11.2s
593: learn: 1688.7195367 total: 16.3s remaining: 11.1s
594: learn: 1688.5573363 total: 16.3s remaining: 11.1s
595: learn: 1688.4107246 total: 16.3s remaining: 11.1s
596: learn: 1688.3281715 total: 16.4s remaining: 11s
597: learn: 1688.1009582 total: 16.4s remaining: 11s
598: learn: 1687.9608896 total: 16.4s remaining: 11s
599: learn: 1687.8577688 total: 16.4s remaining: 11s
600: learn: 1687.5200751 total: 16.5s remaining: 10.9s
601: learn: 1687.2822329 total: 16.5s remaining: 10.9s
602: learn: 1687.0960702 total: 16.5s remaining: 10.9s
603: learn: 1686.7856218 total: 16.6s remaining: 10.9s
604: learn: 1686.6349506 total: 16.6s remaining: 10.8s
605: learn: 1686.4410318 total: 16.6s remaining: 10.8s
606: learn: 1686.2935853 total: 16.6s remaining: 10.8s
607: learn: 1686.2228289 total: 16.7s remaining: 10.7s
608: learn: 1686.0449881 total: 16.7s remaining: 10.7s
609: learn: 1685.7982189 total: 16.7s remaining: 10.7s
610: learn: 1685.7091904 total: 16.7s remaining: 10.7s
611: learn: 1685.5520996 total: 16.8s remaining: 10.6s
612: learn: 1685.3777480 total: 16.8s remaining: 10.6s
613: learn: 1685.2366875 total: 16.8s remaining: 10.6s
614: learn: 1685.1310719 total: 16.9s remaining: 10.5s
615: learn: 1685.0988721 total: 16.9s remaining: 10.5s
616: learn: 1684.9226714 total: 16.9s remaining: 10.5s
617: learn: 1684.8289087 total: 16.9s remaining: 10.5s
618: learn: 1684.6689438 total: 17s remaining: 10.4s
619: learn: 1684.5508836 total: 17s remaining: 10.4s
620: learn: 1684.3876378 total: 17s remaining: 10.4s
621: learn: 1684.3305164 total: 17s remaining: 10.4s
622: learn: 1684.2468376 total: 17.1s remaining: 10.3s
623: learn: 1684.1157999 total: 17.1s remaining: 10.3s
624: learn: 1683.9919746 total: 17.1s remaining: 10.3s
625: learn: 1683.7561116 total: 17.2s remaining: 10.3s
626: learn: 1683.5713000 total: 17.2s remaining: 10.2s
627: learn: 1683.4830475 total: 17.2s remaining: 10.2s
628: learn: 1683.3615383 total: 17.3s remaining: 10.2s
629: learn: 1683.1307478 total: 17.3s remaining: 10.2s
630: learn: 1682.9412419 total: 17.3s remaining: 10.1s
631: learn: 1682.8849423 total: 17.4s remaining: 10.1s
632: learn: 1682.6802639 total: 17.4s remaining: 10.1s
633: learn: 1682.5842850 total: 17.4s remaining: 10.1s
634: learn: 1682.3742238 total: 17.4s remaining: 10s
635: learn: 1682.2336521 total: 17.5s remaining: 9.99s
636: learn: 1682.0595777 total: 17.5s remaining: 9.97s
637: learn: 1681.8801109 total: 17.5s remaining: 9.94s
638: learn: 1681.7568804 total: 17.6s remaining: 9.91s
639: learn: 1681.5689587 total: 17.6s remaining: 9.89s
640: learn: 1681.4705107 total: 17.6s remaining: 9.87s
641: learn: 1681.2873998 total: 17.6s remaining: 9.84s
642: learn: 1681.1822551 total: 17.7s remaining: 9.81s
643: learn: 1680.9026289 total: 17.7s remaining: 9.79s
644: learn: 1680.6493307 total: 17.7s remaining: 9.76s
645: learn: 1680.4461423 total: 17.8s remaining: 9.73s
646: learn: 1680.2984576 total: 17.8s remaining: 9.7s
647: learn: 1680.1198124 total: 17.8s remaining: 9.68s
648: learn: 1679.8931810 total: 17.9s remaining: 9.66s
649: learn: 1679.7707394 total: 17.9s remaining: 9.63s
650: learn: 1679.6267549 total: 17.9s remaining: 9.61s
651: learn: 1679.3254850 total: 18s remaining: 9.58s
652: learn: 1679.1974012 total: 18s remaining: 9.56s
653: learn: 1679.0239951 total: 18s remaining: 9.54s
654: learn: 1678.9140096 total: 18.1s remaining: 9.51s
655: learn: 1678.8305686 total: 18.1s remaining: 9.48s
656: learn: 1678.7207316 total: 18.1s remaining: 9.46s
657: learn: 1678.5385758 total: 18.1s remaining: 9.43s
658: learn: 1678.3041871 total: 18.2s remaining: 9.4s
659: learn: 1678.1954577 total: 18.2s remaining: 9.38s
660: learn: 1677.9739292 total: 18.2s remaining: 9.35s
661: learn: 1677.7965822 total: 18.3s remaining: 9.32s
662: learn: 1677.5953691 total: 18.3s remaining: 9.29s
663: learn: 1677.3802865 total: 18.3s remaining: 9.27s
664: learn: 1677.2096908 total: 18.3s remaining: 9.24s
665: learn: 1677.0288698 total: 18.4s remaining: 9.21s
666: learn: 1676.8431646 total: 18.4s remaining: 9.19s
667: learn: 1676.6366753 total: 18.4s remaining: 9.16s
668: learn: 1676.5794085 total: 18.5s remaining: 9.14s
669: learn: 1676.3746594 total: 18.5s remaining: 9.12s
670: learn: 1676.0512965 total: 18.5s remaining: 9.09s
671: learn: 1675.7797137 total: 18.6s remaining: 9.06s
672: learn: 1675.6533602 total: 18.6s remaining: 9.04s
673: learn: 1675.5334040 total: 18.6s remaining: 9.01s
674: learn: 1675.2710052 total: 18.6s remaining: 8.98s
675: learn: 1675.0194513 total: 18.7s remaining: 8.96s
676: learn: 1674.8800185 total: 18.7s remaining: 8.93s
677: learn: 1674.8142915 total: 18.7s remaining: 8.9s
678: learn: 1674.6339854 total: 18.8s remaining: 8.87s
679: learn: 1674.4911402 total: 18.8s remaining: 8.84s
680: learn: 1674.3170866 total: 18.8s remaining: 8.81s
681: learn: 1674.0560732 total: 18.8s remaining: 8.79s
682: learn: 1673.9112251 total: 18.9s remaining: 8.76s
683: learn: 1673.7637032 total: 18.9s remaining: 8.73s
684: learn: 1673.6548363 total: 18.9s remaining: 8.71s
685: learn: 1673.4307968 total: 19s remaining: 8.68s
686: learn: 1673.2063655 total: 19s remaining: 8.65s
687: learn: 1673.0367300 total: 19s remaining: 8.62s
688: learn: 1672.8713723 total: 19s remaining: 8.6s
689: learn: 1672.6300316 total: 19.1s remaining: 8.57s
690: learn: 1672.4909263 total: 19.1s remaining: 8.54s
691: learn: 1672.3133694 total: 19.1s remaining: 8.52s
692: learn: 1672.1313333 total: 19.2s remaining: 8.49s
693: learn: 1671.9207119 total: 19.2s remaining: 8.46s
694: learn: 1671.7249301 total: 19.2s remaining: 8.43s
695: learn: 1671.5971571 total: 19.2s remaining: 8.4s
696: learn: 1671.3775701 total: 19.3s remaining: 8.38s
697: learn: 1671.2901656 total: 19.3s remaining: 8.35s
698: learn: 1671.1367672 total: 19.3s remaining: 8.32s
699: learn: 1670.9656461 total: 19.3s remaining: 8.29s
700: learn: 1670.8891016 total: 19.4s remaining: 8.26s
701: learn: 1670.6723672 total: 19.4s remaining: 8.23s
702: learn: 1670.5779713 total: 19.4s remaining: 8.2s
703: learn: 1670.4322729 total: 19.4s remaining: 8.18s
704: learn: 1670.1806673 total: 19.5s remaining: 8.15s
705: learn: 1670.0627684 total: 19.5s remaining: 8.12s
706: learn: 1669.8170364 total: 19.5s remaining: 8.09s
707: learn: 1669.6580650 total: 19.6s remaining: 8.07s
708: learn: 1669.4437637 total: 19.6s remaining: 8.04s
709: learn: 1669.2550748 total: 19.6s remaining: 8.01s
710: learn: 1669.1728310 total: 19.6s remaining: 7.99s
711: learn: 1669.0205887 total: 19.7s remaining: 7.96s
712: learn: 1668.9201375 total: 19.7s remaining: 7.93s
713: learn: 1668.7013401 total: 19.7s remaining: 7.9s
714: learn: 1668.5867672 total: 19.8s remaining: 7.88s
715: learn: 1668.3688200 total: 19.8s remaining: 7.85s
716: learn: 1668.2524646 total: 19.8s remaining: 7.82s
717: learn: 1668.0729096 total: 19.9s remaining: 7.8s
718: learn: 1667.9625170 total: 19.9s remaining: 7.77s
719: learn: 1667.8595053 total: 19.9s remaining: 7.74s
720: learn: 1667.7738299 total: 19.9s remaining: 7.71s
721: learn: 1667.6051917 total: 20s remaining: 7.68s
722: learn: 1667.4650996 total: 20s remaining: 7.65s
723: learn: 1667.3163328 total: 20s remaining: 7.63s
724: learn: 1667.2470813 total: 20s remaining: 7.6s
725: learn: 1667.0914945 total: 20.1s remaining: 7.57s
726: learn: 1666.9199299 total: 20.1s remaining: 7.54s
727: learn: 1666.8176568 total: 20.1s remaining: 7.51s
728: learn: 1666.6276974 total: 20.1s remaining: 7.49s
729: learn: 1666.5015264 total: 20.2s remaining: 7.46s
730: learn: 1666.4187297 total: 20.2s remaining: 7.43s
731: learn: 1666.2654086 total: 20.2s remaining: 7.41s
732: learn: 1666.1420780 total: 20.3s remaining: 7.38s
733: learn: 1666.0062577 total: 20.3s remaining: 7.35s
734: learn: 1665.8469857 total: 20.3s remaining: 7.32s
735: learn: 1665.6593665 total: 20.3s remaining: 7.3s
736: learn: 1665.5970291 total: 20.4s remaining: 7.27s
737: learn: 1665.3744995 total: 20.4s remaining: 7.24s
738: learn: 1665.2416914 total: 20.4s remaining: 7.21s
739: learn: 1665.1109316 total: 20.4s remaining: 7.18s
740: learn: 1664.9651241 total: 20.5s remaining: 7.16s
741: learn: 1664.7929602 total: 20.5s remaining: 7.13s
742: learn: 1664.5325161 total: 20.5s remaining: 7.1s
743: learn: 1664.3917870 total: 20.6s remaining: 7.07s
744: learn: 1664.2829849 total: 20.6s remaining: 7.04s
745: learn: 1664.1171401 total: 20.6s remaining: 7.02s
746: learn: 1664.0476245 total: 20.6s remaining: 6.99s
747: learn: 1663.9245268 total: 20.7s remaining: 6.96s
748: learn: 1663.8297673 total: 20.7s remaining: 6.93s
749: learn: 1663.6976534 total: 20.7s remaining: 6.91s
750: learn: 1663.6375726 total: 20.7s remaining: 6.88s
751: learn: 1663.4301196 total: 20.8s remaining: 6.85s
752: learn: 1663.2345638 total: 20.8s remaining: 6.83s
753: learn: 1662.9302072 total: 20.8s remaining: 6.8s
754: learn: 1662.7882007 total: 20.9s remaining: 6.77s
755: learn: 1662.6955447 total: 20.9s remaining: 6.74s
756: learn: 1662.6065034 total: 20.9s remaining: 6.71s
757: learn: 1662.4424117 total: 20.9s remaining: 6.69s
758: learn: 1662.2531657 total: 21s remaining: 6.66s
759: learn: 1662.1316634 total: 21s remaining: 6.63s
760: learn: 1661.9127944 total: 21s remaining: 6.61s
761: learn: 1661.8231598 total: 21.1s remaining: 6.58s
762: learn: 1661.7084338 total: 21.1s remaining: 6.55s
763: learn: 1661.6068094 total: 21.1s remaining: 6.52s
764: learn: 1661.4914161 total: 21.1s remaining: 6.49s
765: learn: 1661.3200825 total: 21.2s remaining: 6.47s
766: learn: 1661.2047310 total: 21.2s remaining: 6.44s
767: learn: 1661.1332760 total: 21.2s remaining: 6.41s
768: learn: 1660.9643193 total: 21.3s remaining: 6.38s
769: learn: 1660.8191334 total: 21.3s remaining: 6.36s
770: learn: 1660.6737604 total: 21.3s remaining: 6.33s
771: learn: 1660.5246274 total: 21.3s remaining: 6.3s
772: learn: 1660.2982657 total: 21.4s remaining: 6.28s
773: learn: 1660.1943779 total: 21.4s remaining: 6.25s
774: learn: 1660.0816458 total: 21.4s remaining: 6.22s
775: learn: 1659.9430763 total: 21.5s remaining: 6.19s
776: learn: 1659.9039053 total: 21.5s remaining: 6.17s
777: learn: 1659.7968199 total: 21.5s remaining: 6.14s
778: learn: 1659.6647130 total: 21.5s remaining: 6.11s
779: learn: 1659.5540529 total: 21.6s remaining: 6.09s
780: learn: 1659.3996019 total: 21.6s remaining: 6.06s
781: learn: 1659.2496673 total: 21.6s remaining: 6.03s
782: learn: 1659.1224272 total: 21.7s remaining: 6s
783: learn: 1659.0496452 total: 21.7s remaining: 5.97s
784: learn: 1658.9036520 total: 21.7s remaining: 5.95s
785: learn: 1658.7804719 total: 21.7s remaining: 5.92s
786: learn: 1658.7188365 total: 21.8s remaining: 5.89s
787: learn: 1658.6161822 total: 21.8s remaining: 5.86s
788: learn: 1658.4895529 total: 21.8s remaining: 5.83s
789: learn: 1658.3560260 total: 21.9s remaining: 5.81s
790: learn: 1658.1837874 total: 21.9s remaining: 5.78s
791: learn: 1658.1047749 total: 21.9s remaining: 5.75s
792: learn: 1658.0000359 total: 21.9s remaining: 5.72s
793: learn: 1657.8923309 total: 22s remaining: 5.7s
794: learn: 1657.8038734 total: 22s remaining: 5.67s
795: learn: 1657.5932615 total: 22s remaining: 5.64s
796: learn: 1657.4300421 total: 22s remaining: 5.61s
797: learn: 1657.3371918 total: 22.1s remaining: 5.59s
798: learn: 1657.2069993 total: 22.1s remaining: 5.56s
799: learn: 1657.0881001 total: 22.1s remaining: 5.53s
800: learn: 1657.0296140 total: 22.1s remaining: 5.5s
801: learn: 1656.9381946 total: 22.2s remaining: 5.47s
802: learn: 1656.7567154 total: 22.2s remaining: 5.45s
803: learn: 1656.6198554 total: 22.2s remaining: 5.42s
804: learn: 1656.3997435 total: 22.3s remaining: 5.39s
805: learn: 1656.1468982 total: 22.3s remaining: 5.36s
806: learn: 1656.0449258 total: 22.3s remaining: 5.33s
807: learn: 1655.8998343 total: 22.3s remaining: 5.31s
808: learn: 1655.7148400 total: 22.4s remaining: 5.28s
809: learn: 1655.6289753 total: 22.4s remaining: 5.25s
810: learn: 1655.4964626 total: 22.4s remaining: 5.23s
811: learn: 1655.3495571 total: 22.5s remaining: 5.2s
812: learn: 1655.1950292 total: 22.5s remaining: 5.17s
813: learn: 1654.9980766 total: 22.5s remaining: 5.15s
814: learn: 1654.8514268 total: 22.6s remaining: 5.12s
815: learn: 1654.7548152 total: 22.6s remaining: 5.09s
816: learn: 1654.6174823 total: 22.6s remaining: 5.06s
817: learn: 1654.5331550 total: 22.6s remaining: 5.04s
818: learn: 1654.4696978 total: 22.7s remaining: 5.01s
819: learn: 1654.3845788 total: 22.7s remaining: 4.98s
820: learn: 1654.2434294 total: 22.7s remaining: 4.96s
821: learn: 1654.1933862 total: 22.8s remaining: 4.93s
822: learn: 1654.0814052 total: 22.8s remaining: 4.9s
823: learn: 1653.9664808 total: 22.8s remaining: 4.87s
824: learn: 1653.8682966 total: 22.8s remaining: 4.84s
825: learn: 1653.7491340 total: 22.9s remaining: 4.82s
826: learn: 1653.6012842 total: 22.9s remaining: 4.79s
827: learn: 1653.4905959 total: 22.9s remaining: 4.76s
828: learn: 1653.3594391 total: 23s remaining: 4.73s
829: learn: 1653.3144348 total: 23s remaining: 4.71s
830: learn: 1653.1509595 total: 23s remaining: 4.68s
831: learn: 1653.0735575 total: 23s remaining: 4.65s
832: learn: 1652.9276219 total: 23.1s remaining: 4.62s
833: learn: 1652.7223869 total: 23.1s remaining: 4.6s
834: learn: 1652.5774761 total: 23.1s remaining: 4.57s
835: learn: 1652.4616236 total: 23.2s remaining: 4.54s
836: learn: 1652.3764327 total: 23.2s remaining: 4.51s
837: learn: 1652.3068810 total: 23.2s remaining: 4.49s
838: learn: 1652.1851521 total: 23.2s remaining: 4.46s
839: learn: 1652.0673676 total: 23.3s remaining: 4.43s
840: learn: 1651.9185240 total: 23.3s remaining: 4.4s
841: learn: 1651.7867096 total: 23.3s remaining: 4.38s
842: learn: 1651.6972004 total: 23.4s remaining: 4.35s
843: learn: 1651.5756958 total: 23.4s remaining: 4.32s
844: learn: 1651.4048558 total: 23.4s remaining: 4.29s
845: learn: 1651.2377065 total: 23.4s remaining: 4.26s
846: learn: 1651.1967564 total: 23.5s remaining: 4.24s
847: learn: 1651.1120873 total: 23.5s remaining: 4.21s
848: learn: 1650.9904963 total: 23.5s remaining: 4.18s
849: learn: 1650.8445709 total: 23.5s remaining: 4.15s
850: learn: 1650.7028655 total: 23.6s remaining: 4.13s
851: learn: 1650.5555192 total: 23.6s remaining: 4.1s
852: learn: 1650.4953875 total: 23.6s remaining: 4.07s
853: learn: 1650.3645091 total: 23.6s remaining: 4.04s
854: learn: 1650.2207563 total: 23.7s remaining: 4.01s
855: learn: 1650.0211246 total: 23.7s remaining: 3.99s
856: learn: 1649.9059174 total: 23.7s remaining: 3.96s
857: learn: 1649.7954363 total: 23.8s remaining: 3.93s
858: learn: 1649.6839780 total: 23.8s remaining: 3.9s
859: learn: 1649.5813628 total: 23.8s remaining: 3.88s
860: learn: 1649.4592609 total: 23.8s remaining: 3.85s
861: learn: 1649.3487263 total: 23.9s remaining: 3.82s
862: learn: 1649.2411005 total: 23.9s remaining: 3.79s
863: learn: 1649.0642997 total: 23.9s remaining: 3.77s
864: learn: 1648.9602855 total: 23.9s remaining: 3.74s
865: learn: 1648.7832465 total: 24s remaining: 3.71s
866: learn: 1648.6824371 total: 24s remaining: 3.68s
867: learn: 1648.5702472 total: 24s remaining: 3.65s
868: learn: 1648.4464980 total: 24.1s remaining: 3.63s
869: learn: 1648.3673383 total: 24.1s remaining: 3.6s
870: learn: 1648.2566701 total: 24.1s remaining: 3.57s
871: learn: 1648.0447772 total: 24.1s remaining: 3.54s
872: learn: 1647.9539352 total: 24.2s remaining: 3.52s
873: learn: 1647.8747995 total: 24.2s remaining: 3.49s
874: learn: 1647.7535333 total: 24.2s remaining: 3.46s
875: learn: 1647.5982134 total: 24.2s remaining: 3.43s
876: learn: 1647.4565125 total: 24.3s remaining: 3.4s
877: learn: 1647.3620061 total: 24.3s remaining: 3.38s
878: learn: 1647.2474307 total: 24.3s remaining: 3.35s
879: learn: 1647.0649321 total: 24.4s remaining: 3.32s
880: learn: 1647.0025619 total: 24.4s remaining: 3.29s
881: learn: 1646.8819560 total: 24.4s remaining: 3.27s
882: learn: 1646.7740890 total: 24.4s remaining: 3.24s
883: learn: 1646.7232520 total: 24.5s remaining: 3.21s
884: learn: 1646.6137503 total: 24.5s remaining: 3.18s
885: learn: 1646.5218245 total: 24.5s remaining: 3.15s
886: learn: 1646.3686811 total: 24.5s remaining: 3.13s
887: learn: 1646.2534959 total: 24.6s remaining: 3.1s
888: learn: 1646.0942544 total: 24.6s remaining: 3.07s
889: learn: 1646.0092940 total: 24.6s remaining: 3.04s
890: learn: 1645.8963441 total: 24.7s remaining: 3.02s
891: learn: 1645.8181436 total: 24.7s remaining: 2.99s
892: learn: 1645.7441894 total: 24.7s remaining: 2.96s
893: learn: 1645.6768383 total: 24.7s remaining: 2.93s
894: learn: 1645.5531437 total: 24.8s remaining: 2.9s
895: learn: 1645.4198543 total: 24.8s remaining: 2.88s
896: learn: 1645.2832337 total: 24.8s remaining: 2.85s
897: learn: 1645.1688441 total: 24.8s remaining: 2.82s
898: learn: 1645.0560755 total: 24.9s remaining: 2.79s
899: learn: 1644.8688373 total: 24.9s remaining: 2.77s
900: learn: 1644.7249891 total: 24.9s remaining: 2.74s
901: learn: 1644.6332902 total: 25s remaining: 2.71s
902: learn: 1644.5020692 total: 25s remaining: 2.68s
903: learn: 1644.4192215 total: 25s remaining: 2.65s
904: learn: 1644.2567349 total: 25s remaining: 2.63s
905: learn: 1644.1269045 total: 25.1s remaining: 2.6s
906: learn: 1644.0442046 total: 25.1s remaining: 2.57s
907: learn: 1643.8894275 total: 25.1s remaining: 2.54s
908: learn: 1643.8297119 total: 25.2s remaining: 2.52s
909: learn: 1643.6913590 total: 25.2s remaining: 2.49s
910: learn: 1643.5227169 total: 25.2s remaining: 2.46s
911: learn: 1643.4071328 total: 25.2s remaining: 2.44s
912: learn: 1643.2995627 total: 25.3s remaining: 2.41s
913: learn: 1643.1688928 total: 25.3s remaining: 2.38s
914: learn: 1642.9227816 total: 25.3s remaining: 2.35s
915: learn: 1642.8110497 total: 25.4s remaining: 2.33s
916: learn: 1642.6822289 total: 25.4s remaining: 2.3s
917: learn: 1642.5779032 total: 25.4s remaining: 2.27s
918: learn: 1642.4686556 total: 25.4s remaining: 2.24s
919: learn: 1642.2731516 total: 25.5s remaining: 2.21s
920: learn: 1642.1689847 total: 25.5s remaining: 2.19s
921: learn: 1642.0340051 total: 25.5s remaining: 2.16s
922: learn: 1641.9586741 total: 25.6s remaining: 2.13s
923: learn: 1641.8432721 total: 25.6s remaining: 2.1s
924: learn: 1641.7486246 total: 25.6s remaining: 2.08s
925: learn: 1641.7125286 total: 25.6s remaining: 2.05s
926: learn: 1641.5950423 total: 25.7s remaining: 2.02s
927: learn: 1641.4824923 total: 25.7s remaining: 1.99s
928: learn: 1641.3577161 total: 25.7s remaining: 1.97s
929: learn: 1641.1907321 total: 25.8s remaining: 1.94s
930: learn: 1641.0947514 total: 25.8s remaining: 1.91s
931: learn: 1640.9059267 total: 25.8s remaining: 1.88s
932: learn: 1640.7250869 total: 25.8s remaining: 1.85s
933: learn: 1640.6127859 total: 25.9s remaining: 1.83s
934: learn: 1640.4982666 total: 25.9s remaining: 1.8s
935: learn: 1640.3904213 total: 25.9s remaining: 1.77s
936: learn: 1640.2900579 total: 26s remaining: 1.75s
937: learn: 1640.0903968 total: 26s remaining: 1.72s
938: learn: 1639.9924277 total: 26s remaining: 1.69s
939: learn: 1639.8339284 total: 26s remaining: 1.66s
940: learn: 1639.7347681 total: 26.1s remaining: 1.63s
941: learn: 1639.5997686 total: 26.1s remaining: 1.61s
942: learn: 1639.4792733 total: 26.1s remaining: 1.58s
943: learn: 1639.3978780 total: 26.2s remaining: 1.55s
944: learn: 1639.3155623 total: 26.2s remaining: 1.52s
945: learn: 1639.2351247 total: 26.2s remaining: 1.5s
946: learn: 1639.1582369 total: 26.2s remaining: 1.47s
947: learn: 1638.9711013 total: 26.3s remaining: 1.44s
948: learn: 1638.7849980 total: 26.3s remaining: 1.41s
949: learn: 1638.6744101 total: 26.3s remaining: 1.39s
950: learn: 1638.4995723 total: 26.3s remaining: 1.36s
951: learn: 1638.3695943 total: 26.4s remaining: 1.33s
952: learn: 1638.2048436 total: 26.4s remaining: 1.3s
953: learn: 1638.0983857 total: 26.4s remaining: 1.27s
954: learn: 1637.9653838 total: 26.5s remaining: 1.25s
955: learn: 1637.8520881 total: 26.5s remaining: 1.22s
956: learn: 1637.7317360 total: 26.5s remaining: 1.19s
957: learn: 1637.5546457 total: 26.5s remaining: 1.16s
958: learn: 1637.4251170 total: 26.6s remaining: 1.14s
959: learn: 1637.3077433 total: 26.6s remaining: 1.11s
960: learn: 1637.1882530 total: 26.6s remaining: 1.08s
961: learn: 1637.1305962 total: 26.7s remaining: 1.05s
962: learn: 1637.0143659 total: 26.7s remaining: 1.02s
963: learn: 1636.9516064 total: 26.7s remaining: 998ms
964: learn: 1636.8410392 total: 26.8s remaining: 971ms
965: learn: 1636.7464148 total: 26.8s remaining: 943ms
966: learn: 1636.7083497 total: 26.8s remaining: 915ms
967: learn: 1636.5932615 total: 26.8s remaining: 888ms
968: learn: 1636.5036348 total: 26.9s remaining: 860ms
969: learn: 1636.4107337 total: 26.9s remaining: 832ms
970: learn: 1636.3366511 total: 26.9s remaining: 805ms
971: learn: 1636.2240660 total: 27s remaining: 777ms
972: learn: 1636.1251069 total: 27s remaining: 749ms
973: learn: 1635.9905361 total: 27s remaining: 721ms
974: learn: 1635.9437341 total: 27.1s remaining: 694ms
975: learn: 1635.8409764 total: 27.1s remaining: 666ms
976: learn: 1635.7162099 total: 27.1s remaining: 638ms
977: learn: 1635.6287511 total: 27.1s remaining: 610ms
978: learn: 1635.5549846 total: 27.2s remaining: 583ms
979: learn: 1635.4051529 total: 27.2s remaining: 555ms
980: learn: 1635.3406003 total: 27.2s remaining: 527ms
981: learn: 1635.2764127 total: 27.3s remaining: 500ms
982: learn: 1635.1289619 total: 27.3s remaining: 472ms
983: learn: 1635.0934711 total: 27.3s remaining: 444ms
984: learn: 1635.0317147 total: 27.3s remaining: 416ms
985: learn: 1634.9273438 total: 27.4s remaining: 389ms
986: learn: 1634.8101853 total: 27.4s remaining: 361ms
987: learn: 1634.6494664 total: 27.4s remaining: 333ms
988: learn: 1634.4437055 total: 27.5s remaining: 305ms
989: learn: 1634.3706506 total: 27.5s remaining: 278ms
990: learn: 1634.2287648 total: 27.5s remaining: 250ms
991: learn: 1634.0952565 total: 27.5s remaining: 222ms
992: learn: 1633.9584680 total: 27.6s remaining: 194ms
993: learn: 1633.8105420 total: 27.6s remaining: 167ms
994: learn: 1633.7068815 total: 27.6s remaining: 139ms
995: learn: 1633.6137294 total: 27.7s remaining: 111ms
996: learn: 1633.5306133 total: 27.7s remaining: 83.3ms
997: learn: 1633.4055632 total: 27.7s remaining: 55.5ms
998: learn: 1633.3060596 total: 27.7s remaining: 27.8ms
999: learn: 1633.2108707 total: 27.8s remaining: 0us
Learning rate set to 0.097814
0: learn: 4268.9324355 total: 47.7ms remaining: 47.6s
1: learn: 4010.6410460 total: 88.4ms remaining: 44.1s
2: learn: 3784.1669481 total: 134ms remaining: 44.4s
3: learn: 3579.5232253 total: 170ms remaining: 42.3s
4: learn: 3400.3400769 total: 222ms remaining: 44.2s
5: learn: 3242.2229009 total: 259ms remaining: 42.9s
6: learn: 3101.0951468 total: 309ms remaining: 43.8s
7: learn: 2976.0448761 total: 345ms remaining: 42.8s
8: learn: 2865.0184049 total: 388ms remaining: 42.7s
9: learn: 2769.5971830 total: 428ms remaining: 42.4s
10: learn: 2688.7300008 total: 463ms remaining: 41.7s
11: learn: 2611.4192577 total: 515ms remaining: 42.4s
12: learn: 2547.1626659 total: 553ms remaining: 42s
13: learn: 2486.4814447 total: 597ms remaining: 42.1s
14: learn: 2436.7976506 total: 631ms remaining: 41.4s
15: learn: 2388.2476102 total: 675ms remaining: 41.5s
16: learn: 2349.1750890 total: 718ms remaining: 41.5s
17: learn: 2311.5397711 total: 752ms remaining: 41s
18: learn: 2279.0709995 total: 799ms remaining: 41.3s
19: learn: 2249.5200641 total: 835ms remaining: 40.9s
20: learn: 2225.0638599 total: 875ms remaining: 40.8s
21: learn: 2202.5869378 total: 915ms remaining: 40.7s
22: learn: 2181.3138603 total: 950ms remaining: 40.3s
23: learn: 2162.7987170 total: 994ms remaining: 40.4s
24: learn: 2146.4960625 total: 1.03s remaining: 40.1s
25: learn: 2130.0284629 total: 1.07s remaining: 40s
26: learn: 2114.8175590 total: 1.1s remaining: 39.9s
27: learn: 2103.0645814 total: 1.14s remaining: 39.6s
28: learn: 2092.1972325 total: 1.18s remaining: 39.6s
29: learn: 2082.0707635 total: 1.22s remaining: 39.4s
30: learn: 2072.5199001 total: 1.26s remaining: 39.3s
31: learn: 2061.9256277 total: 1.3s remaining: 39.3s
32: learn: 2053.0818270 total: 1.34s remaining: 39.2s
33: learn: 2045.8192642 total: 1.38s remaining: 39.2s
34: learn: 2038.9822441 total: 1.41s remaining: 39s
35: learn: 2033.6254723 total: 1.45s remaining: 38.8s
36: learn: 2028.4506164 total: 1.49s remaining: 38.8s
37: learn: 2020.3179117 total: 1.53s remaining: 38.7s
38: learn: 2015.5523488 total: 1.57s remaining: 38.7s
39: learn: 2010.3228599 total: 1.6s remaining: 38.5s
40: learn: 2004.3267459 total: 1.64s remaining: 38.4s
41: learn: 1998.5867855 total: 1.69s remaining: 38.4s
42: learn: 1994.6349425 total: 1.72s remaining: 38.2s
43: learn: 1991.2172038 total: 1.76s remaining: 38.2s
44: learn: 1988.5022244 total: 1.79s remaining: 38s
45: learn: 1984.3815351 total: 1.83s remaining: 38s
46: learn: 1978.7809852 total: 1.88s remaining: 38s
47: learn: 1976.1214547 total: 1.91s remaining: 37.8s
48: learn: 1972.7190666 total: 1.95s remaining: 37.8s
49: learn: 1968.6779676 total: 1.98s remaining: 37.7s
50: learn: 1963.1907207 total: 2.02s remaining: 37.6s
51: learn: 1960.2988615 total: 2.07s remaining: 37.7s
52: learn: 1957.8772666 total: 2.1s remaining: 37.5s
53: learn: 1955.8311334 total: 2.14s remaining: 37.5s
54: learn: 1953.0846871 total: 2.18s remaining: 37.4s
55: learn: 1950.5234577 total: 2.21s remaining: 37.2s
56: learn: 1946.2558032 total: 2.25s remaining: 37.3s
57: learn: 1943.7185580 total: 2.29s remaining: 37.1s
58: learn: 1941.8747937 total: 2.32s remaining: 37s
59: learn: 1938.4969708 total: 2.36s remaining: 37s
60: learn: 1935.7775907 total: 2.4s remaining: 36.9s
61: learn: 1934.4810527 total: 2.43s remaining: 36.8s
62: learn: 1931.2776221 total: 2.47s remaining: 36.8s
63: learn: 1929.5589586 total: 2.5s remaining: 36.6s
64: learn: 1926.3388558 total: 2.55s remaining: 36.7s
65: learn: 1923.6750746 total: 2.58s remaining: 36.6s
66: learn: 1922.5330800 total: 2.62s remaining: 36.5s
67: learn: 1920.8281168 total: 2.66s remaining: 36.4s
68: learn: 1918.3175340 total: 2.69s remaining: 36.3s
69: learn: 1915.7574885 total: 2.73s remaining: 36.3s
70: learn: 1913.6291187 total: 2.77s remaining: 36.3s
71: learn: 1911.3063450 total: 2.81s remaining: 36.2s
72: learn: 1910.0146675 total: 2.85s remaining: 36.1s
73: learn: 1908.5637534 total: 2.88s remaining: 36s
74: learn: 1906.4780092 total: 2.92s remaining: 36s
75: learn: 1905.1691680 total: 2.96s remaining: 36s
76: learn: 1903.1997125 total: 2.99s remaining: 35.8s
77: learn: 1901.8821513 total: 3.03s remaining: 35.9s
78: learn: 1900.1337731 total: 3.06s remaining: 35.7s
79: learn: 1899.1992384 total: 3.1s remaining: 35.6s
80: learn: 1897.3895928 total: 3.14s remaining: 35.6s
81: learn: 1895.8139714 total: 3.17s remaining: 35.5s
82: learn: 1893.6768162 total: 3.22s remaining: 35.5s
83: learn: 1891.4986383 total: 3.25s remaining: 35.5s
84: learn: 1889.8489640 total: 3.29s remaining: 35.4s
85: learn: 1888.8394635 total: 3.33s remaining: 35.4s
86: learn: 1887.7631764 total: 3.36s remaining: 35.3s
87: learn: 1886.0409055 total: 3.4s remaining: 35.2s
88: learn: 1884.4447070 total: 3.44s remaining: 35.2s
89: learn: 1882.9561620 total: 3.47s remaining: 35.1s
90: learn: 1881.6691320 total: 3.51s remaining: 35.1s
91: learn: 1879.9898022 total: 3.55s remaining: 35s
92: learn: 1879.0661497 total: 3.58s remaining: 34.9s
93: learn: 1877.3728090 total: 3.62s remaining: 34.9s
94: learn: 1876.1311891 total: 3.66s remaining: 34.8s
95: learn: 1874.7015338 total: 3.7s remaining: 34.8s
96: learn: 1873.5465573 total: 3.73s remaining: 34.8s
97: learn: 1872.7624631 total: 3.77s remaining: 34.7s
98: learn: 1870.7938629 total: 3.81s remaining: 34.6s
99: learn: 1869.2673785 total: 3.84s remaining: 34.6s
100: learn: 1867.9182654 total: 3.89s remaining: 34.6s
101: learn: 1866.6275050 total: 3.92s remaining: 34.5s
102: learn: 1864.8356438 total: 3.96s remaining: 34.5s
103: learn: 1863.8575595 total: 4s remaining: 34.5s
104: learn: 1862.9924644 total: 4.04s remaining: 34.4s
105: learn: 1862.4445378 total: 4.08s remaining: 34.4s
106: learn: 1861.5129977 total: 4.11s remaining: 34.3s
107: learn: 1859.9204173 total: 4.14s remaining: 34.2s
108: learn: 1858.7382351 total: 4.18s remaining: 34.2s
109: learn: 1857.3892643 total: 4.22s remaining: 34.1s
110: learn: 1856.6283950 total: 4.26s remaining: 34.1s
111: learn: 1855.4247124 total: 4.29s remaining: 34s
112: learn: 1854.3838611 total: 4.33s remaining: 34s
113: learn: 1853.5954063 total: 4.37s remaining: 34s
114: learn: 1852.6219831 total: 4.4s remaining: 33.9s
115: learn: 1851.9004090 total: 4.44s remaining: 33.8s
116: learn: 1851.2159787 total: 4.47s remaining: 33.8s
117: learn: 1850.5915299 total: 4.5s remaining: 33.7s
118: learn: 1849.8976949 total: 4.54s remaining: 33.6s
119: learn: 1848.8652075 total: 4.58s remaining: 33.6s
120: learn: 1847.8232751 total: 4.62s remaining: 33.5s
121: learn: 1847.2230104 total: 4.66s remaining: 33.5s
122: learn: 1846.5371880 total: 4.7s remaining: 33.5s
123: learn: 1845.8262919 total: 4.73s remaining: 33.4s
124: learn: 1845.3827261 total: 4.77s remaining: 33.4s
125: learn: 1844.6014292 total: 4.8s remaining: 33.3s
126: learn: 1843.7578276 total: 4.84s remaining: 33.3s
127: learn: 1843.0869271 total: 4.88s remaining: 33.2s
128: learn: 1841.9619538 total: 4.91s remaining: 33.2s
129: learn: 1841.2991078 total: 4.95s remaining: 33.2s
130: learn: 1840.4296282 total: 4.99s remaining: 33.1s
131: learn: 1839.1957353 total: 5.03s remaining: 33.1s
132: learn: 1838.1950594 total: 5.06s remaining: 33s
133: learn: 1837.3731522 total: 5.1s remaining: 32.9s
134: learn: 1836.7928530 total: 5.14s remaining: 32.9s
135: learn: 1835.7954051 total: 5.18s remaining: 32.9s
136: learn: 1834.9445079 total: 5.21s remaining: 32.8s
137: learn: 1834.0497983 total: 5.25s remaining: 32.8s
138: learn: 1833.0138969 total: 5.29s remaining: 32.8s
139: learn: 1832.2018222 total: 5.33s remaining: 32.7s
140: learn: 1831.6937920 total: 5.36s remaining: 32.7s
141: learn: 1831.1211248 total: 5.39s remaining: 32.6s
142: learn: 1830.3238911 total: 5.43s remaining: 32.6s
143: learn: 1829.7812267 total: 5.46s remaining: 32.5s
144: learn: 1829.0570199 total: 5.5s remaining: 32.4s
145: learn: 1828.4505519 total: 5.54s remaining: 32.4s
146: learn: 1828.0967705 total: 5.57s remaining: 32.3s
147: learn: 1827.0128422 total: 5.61s remaining: 32.3s
148: learn: 1826.1013723 total: 5.65s remaining: 32.3s
149: learn: 1825.4182648 total: 5.68s remaining: 32.2s
150: learn: 1824.6176075 total: 5.73s remaining: 32.2s
151: learn: 1823.8060667 total: 5.76s remaining: 32.1s
152: learn: 1823.1678913 total: 5.8s remaining: 32.1s
153: learn: 1822.7543456 total: 5.84s remaining: 32.1s
154: learn: 1822.1850611 total: 5.87s remaining: 32s
155: learn: 1821.5692808 total: 5.92s remaining: 32s
156: learn: 1820.9095442 total: 5.96s remaining: 32s
157: learn: 1820.4462638 total: 5.99s remaining: 31.9s
158: learn: 1819.8860522 total: 6.03s remaining: 31.9s
159: learn: 1819.2441115 total: 6.06s remaining: 31.8s
160: learn: 1818.4616216 total: 6.11s remaining: 31.8s
161: learn: 1817.9427457 total: 6.14s remaining: 31.8s
162: learn: 1817.4403200 total: 6.18s remaining: 31.7s
163: learn: 1816.9666062 total: 6.22s remaining: 31.7s
164: learn: 1816.2439721 total: 6.25s remaining: 31.6s
165: learn: 1815.8090863 total: 6.29s remaining: 31.6s
166: learn: 1815.3273199 total: 6.33s remaining: 31.6s
167: learn: 1814.5158132 total: 6.36s remaining: 31.5s
168: learn: 1814.1986002 total: 6.4s remaining: 31.5s
169: learn: 1813.6626373 total: 6.44s remaining: 31.4s
170: learn: 1812.9822789 total: 6.47s remaining: 31.4s
171: learn: 1812.5582427 total: 6.51s remaining: 31.4s
172: learn: 1811.8354672 total: 6.54s remaining: 31.3s
173: learn: 1811.3725020 total: 6.58s remaining: 31.2s
174: learn: 1810.8608786 total: 6.62s remaining: 31.2s
175: learn: 1810.2449498 total: 6.65s remaining: 31.1s
176: learn: 1809.6423035 total: 6.7s remaining: 31.1s
177: learn: 1809.2480727 total: 6.73s remaining: 31.1s
178: learn: 1808.6675072 total: 6.76s remaining: 31s
179: learn: 1808.0039389 total: 6.8s remaining: 31s
180: learn: 1807.6046747 total: 6.83s remaining: 30.9s
181: learn: 1807.3519822 total: 6.87s remaining: 30.9s
182: learn: 1806.8990466 total: 6.91s remaining: 30.8s
183: learn: 1806.2886441 total: 6.94s remaining: 30.8s
184: learn: 1805.5854407 total: 6.99s remaining: 30.8s
185: learn: 1805.0783816 total: 7.03s remaining: 30.8s
186: learn: 1804.5242344 total: 7.07s remaining: 30.7s
187: learn: 1804.3149081 total: 7.1s remaining: 30.7s
188: learn: 1803.7452142 total: 7.14s remaining: 30.6s
189: learn: 1803.4434408 total: 7.18s remaining: 30.6s
190: learn: 1803.1064225 total: 7.22s remaining: 30.6s
191: learn: 1802.6029852 total: 7.27s remaining: 30.6s
192: learn: 1802.1195912 total: 7.3s remaining: 30.5s
193: learn: 1801.6937097 total: 7.35s remaining: 30.5s
194: learn: 1801.2427150 total: 7.39s remaining: 30.5s
195: learn: 1800.9240433 total: 7.43s remaining: 30.5s
196: learn: 1800.5739351 total: 7.47s remaining: 30.5s
197: learn: 1800.1988974 total: 7.51s remaining: 30.4s
198: learn: 1799.8508234 total: 7.55s remaining: 30.4s
199: learn: 1799.1884678 total: 7.59s remaining: 30.4s
200: learn: 1798.5902332 total: 7.63s remaining: 30.3s
201: learn: 1798.0212189 total: 7.67s remaining: 30.3s
202: learn: 1797.7243252 total: 7.71s remaining: 30.3s
203: learn: 1797.0336469 total: 7.75s remaining: 30.2s
204: learn: 1796.3191776 total: 7.79s remaining: 30.2s
205: learn: 1795.9519571 total: 7.82s remaining: 30.2s
206: learn: 1795.5950900 total: 7.87s remaining: 30.1s
207: learn: 1795.2389059 total: 7.91s remaining: 30.1s
208: learn: 1794.7079839 total: 7.95s remaining: 30.1s
209: learn: 1794.1596165 total: 7.99s remaining: 30s
210: learn: 1793.7831297 total: 8.03s remaining: 30s
211: learn: 1793.4907585 total: 8.06s remaining: 30s
212: learn: 1792.9769478 total: 8.09s remaining: 29.9s
213: learn: 1792.5382337 total: 8.13s remaining: 29.9s
214: learn: 1791.9538646 total: 8.17s remaining: 29.8s
215: learn: 1791.2988125 total: 8.21s remaining: 29.8s
216: learn: 1790.8879168 total: 8.25s remaining: 29.8s
217: learn: 1790.5466705 total: 8.28s remaining: 29.7s
218: learn: 1790.1821375 total: 8.31s remaining: 29.6s
219: learn: 1789.8022776 total: 8.35s remaining: 29.6s
220: learn: 1789.3897690 total: 8.38s remaining: 29.5s
221: learn: 1789.2006412 total: 8.42s remaining: 29.5s
222: learn: 1788.6142665 total: 8.46s remaining: 29.5s
223: learn: 1788.1002454 total: 8.49s remaining: 29.4s
224: learn: 1787.6531289 total: 8.53s remaining: 29.4s
225: learn: 1787.2842224 total: 8.56s remaining: 29.3s
226: learn: 1786.9077368 total: 8.61s remaining: 29.3s
227: learn: 1786.4275520 total: 8.64s remaining: 29.3s
228: learn: 1786.1205733 total: 8.67s remaining: 29.2s
229: learn: 1785.6904303 total: 8.72s remaining: 29.2s
230: learn: 1785.3968018 total: 8.75s remaining: 29.1s
231: learn: 1784.9782433 total: 8.79s remaining: 29.1s
232: learn: 1784.6855910 total: 8.82s remaining: 29s
233: learn: 1784.2238292 total: 8.86s remaining: 29s
234: learn: 1783.9608709 total: 8.89s remaining: 29s
235: learn: 1783.6271962 total: 8.93s remaining: 28.9s
236: learn: 1783.2335930 total: 8.96s remaining: 28.8s
237: learn: 1782.7868410 total: 9s remaining: 28.8s
238: learn: 1782.5721117 total: 9.04s remaining: 28.8s
239: learn: 1781.9219510 total: 9.08s remaining: 28.8s
240: learn: 1781.7145898 total: 9.12s remaining: 28.7s
241: learn: 1781.3611394 total: 9.15s remaining: 28.7s
242: learn: 1781.1198496 total: 9.2s remaining: 28.7s
243: learn: 1780.6603243 total: 9.23s remaining: 28.6s
244: learn: 1780.2112602 total: 9.27s remaining: 28.6s
245: learn: 1779.9453147 total: 9.31s remaining: 28.5s
246: learn: 1779.5035305 total: 9.34s remaining: 28.5s
247: learn: 1779.1024113 total: 9.39s remaining: 28.5s
248: learn: 1778.6124969 total: 9.42s remaining: 28.4s
249: learn: 1778.2540646 total: 9.46s remaining: 28.4s
250: learn: 1777.8708548 total: 9.5s remaining: 28.3s
251: learn: 1777.6396625 total: 9.53s remaining: 28.3s
252: learn: 1777.3333206 total: 9.56s remaining: 28.2s
253: learn: 1776.9195690 total: 9.61s remaining: 28.2s
254: learn: 1776.6025572 total: 9.64s remaining: 28.2s
255: learn: 1776.1948877 total: 9.68s remaining: 28.1s
256: learn: 1775.9161063 total: 9.72s remaining: 28.1s
257: learn: 1775.6270258 total: 9.75s remaining: 28s
258: learn: 1775.3998128 total: 9.79s remaining: 28s
259: learn: 1775.0897997 total: 9.83s remaining: 28s
260: learn: 1774.8271029 total: 9.87s remaining: 27.9s
261: learn: 1774.3388322 total: 9.9s remaining: 27.9s
262: learn: 1774.0200502 total: 9.94s remaining: 27.9s
263: learn: 1773.6887452 total: 9.98s remaining: 27.8s
264: learn: 1773.4059839 total: 10s remaining: 27.8s
265: learn: 1773.1201130 total: 10.1s remaining: 27.8s
266: learn: 1772.7696711 total: 10.1s remaining: 27.7s
267: learn: 1772.4872386 total: 10.1s remaining: 27.7s
268: learn: 1772.2062464 total: 10.2s remaining: 27.6s
269: learn: 1771.8423772 total: 10.2s remaining: 27.6s
270: learn: 1771.5846551 total: 10.2s remaining: 27.6s
271: learn: 1771.4041686 total: 10.3s remaining: 27.5s
272: learn: 1770.8989639 total: 10.3s remaining: 27.5s
273: learn: 1770.1904435 total: 10.4s remaining: 27.5s
274: learn: 1769.7568932 total: 10.4s remaining: 27.4s
275: learn: 1769.3664708 total: 10.4s remaining: 27.4s
276: learn: 1769.0642151 total: 10.5s remaining: 27.4s
277: learn: 1768.6658957 total: 10.5s remaining: 27.3s
278: learn: 1768.1364497 total: 10.6s remaining: 27.3s
279: learn: 1767.9284926 total: 10.6s remaining: 27.2s
280: learn: 1767.6985789 total: 10.6s remaining: 27.2s
281: learn: 1767.1823263 total: 10.7s remaining: 27.2s
282: learn: 1766.8906104 total: 10.7s remaining: 27.1s
283: learn: 1766.6383109 total: 10.8s remaining: 27.1s
284: learn: 1766.1665040 total: 10.8s remaining: 27.1s
285: learn: 1765.8448374 total: 10.8s remaining: 27s
286: learn: 1765.5680723 total: 10.9s remaining: 27s
287: learn: 1765.3666445 total: 10.9s remaining: 27s
288: learn: 1765.1500794 total: 10.9s remaining: 26.9s
289: learn: 1764.8564873 total: 11s remaining: 26.9s
290: learn: 1764.5185652 total: 11s remaining: 26.9s
291: learn: 1764.1867872 total: 11.1s remaining: 26.8s
292: learn: 1763.8993393 total: 11.1s remaining: 26.8s
293: learn: 1763.6660679 total: 11.1s remaining: 26.8s
294: learn: 1763.3575871 total: 11.2s remaining: 26.7s
295: learn: 1763.1142639 total: 11.2s remaining: 26.7s
296: learn: 1762.6812398 total: 11.3s remaining: 26.6s
297: learn: 1762.2830127 total: 11.3s remaining: 26.6s
298: learn: 1762.0901304 total: 11.3s remaining: 26.6s
299: learn: 1761.7681685 total: 11.4s remaining: 26.5s
300: learn: 1761.4818991 total: 11.4s remaining: 26.5s
301: learn: 1761.1103422 total: 11.4s remaining: 26.4s
302: learn: 1760.8641990 total: 11.5s remaining: 26.4s
303: learn: 1760.6317205 total: 11.5s remaining: 26.4s
304: learn: 1760.3780051 total: 11.6s remaining: 26.3s
305: learn: 1760.0414518 total: 11.6s remaining: 26.3s
306: learn: 1759.8263695 total: 11.6s remaining: 26.3s
307: learn: 1759.5421926 total: 11.7s remaining: 26.2s
308: learn: 1759.2803304 total: 11.7s remaining: 26.2s
309: learn: 1758.7037405 total: 11.8s remaining: 26.2s
310: learn: 1758.4650643 total: 11.8s remaining: 26.1s
311: learn: 1758.0051509 total: 11.8s remaining: 26.1s
312: learn: 1757.8479266 total: 11.9s remaining: 26.1s
313: learn: 1757.5739874 total: 11.9s remaining: 26s
314: learn: 1757.3063596 total: 11.9s remaining: 26s
315: learn: 1757.0848107 total: 12s remaining: 25.9s
316: learn: 1756.7994567 total: 12s remaining: 25.9s
317: learn: 1756.5600904 total: 12.1s remaining: 25.9s
318: learn: 1756.2659534 total: 12.1s remaining: 25.8s
319: learn: 1756.0907102 total: 12.1s remaining: 25.8s
320: learn: 1755.8491010 total: 12.2s remaining: 25.7s
321: learn: 1755.5478877 total: 12.2s remaining: 25.7s
322: learn: 1755.1168360 total: 12.2s remaining: 25.7s
323: learn: 1754.8449535 total: 12.3s remaining: 25.6s
324: learn: 1754.5057935 total: 12.3s remaining: 25.6s
325: learn: 1754.0880522 total: 12.4s remaining: 25.6s
326: learn: 1753.8344479 total: 12.4s remaining: 25.5s
327: learn: 1753.6281704 total: 12.4s remaining: 25.5s
328: learn: 1753.2965795 total: 12.5s remaining: 25.4s
329: learn: 1752.9300382 total: 12.5s remaining: 25.4s
330: learn: 1752.5147734 total: 12.6s remaining: 25.4s
331: learn: 1752.1240970 total: 12.6s remaining: 25.4s
332: learn: 1751.9118084 total: 12.6s remaining: 25.3s
333: learn: 1751.5902142 total: 12.7s remaining: 25.3s
334: learn: 1751.3225292 total: 12.7s remaining: 25.3s
335: learn: 1750.9929799 total: 12.8s remaining: 25.2s
336: learn: 1750.7245450 total: 12.8s remaining: 25.2s
337: learn: 1750.3474505 total: 12.8s remaining: 25.1s
338: learn: 1750.1473267 total: 12.9s remaining: 25.1s
339: learn: 1749.9925988 total: 12.9s remaining: 25.1s
340: learn: 1749.7293843 total: 12.9s remaining: 25s
341: learn: 1749.5443800 total: 13s remaining: 25s
342: learn: 1749.2786608 total: 13s remaining: 24.9s
343: learn: 1749.0282543 total: 13.1s remaining: 24.9s
344: learn: 1748.8016758 total: 13.1s remaining: 24.9s
345: learn: 1748.5816151 total: 13.1s remaining: 24.8s
346: learn: 1748.2391353 total: 13.2s remaining: 24.8s
347: learn: 1747.9193570 total: 13.2s remaining: 24.8s
348: learn: 1747.5006882 total: 13.3s remaining: 24.7s
349: learn: 1747.2459727 total: 13.3s remaining: 24.7s
350: learn: 1746.9780406 total: 13.3s remaining: 24.7s
351: learn: 1746.6494659 total: 13.4s remaining: 24.6s
352: learn: 1746.4461148 total: 13.4s remaining: 24.6s
353: learn: 1746.2071127 total: 13.5s remaining: 24.5s
354: learn: 1745.9392687 total: 13.5s remaining: 24.5s
355: learn: 1745.5625000 total: 13.5s remaining: 24.5s
356: learn: 1745.2700794 total: 13.6s remaining: 24.4s
357: learn: 1744.8984304 total: 13.6s remaining: 24.4s
358: learn: 1744.6932283 total: 13.6s remaining: 24.4s
359: learn: 1744.5093506 total: 13.7s remaining: 24.3s
360: learn: 1744.2132385 total: 13.7s remaining: 24.3s
361: learn: 1743.7651854 total: 13.8s remaining: 24.3s
362: learn: 1743.2861394 total: 13.8s remaining: 24.2s
363: learn: 1743.0874491 total: 13.8s remaining: 24.2s
364: learn: 1742.8353213 total: 13.9s remaining: 24.2s
365: learn: 1742.6024486 total: 13.9s remaining: 24.1s
366: learn: 1742.3204285 total: 14s remaining: 24.1s
367: learn: 1742.1034864 total: 14s remaining: 24s
368: learn: 1741.6239581 total: 14s remaining: 24s
369: learn: 1741.3617940 total: 14.1s remaining: 24s
370: learn: 1741.0757835 total: 14.1s remaining: 23.9s
371: learn: 1740.7511262 total: 14.2s remaining: 23.9s
372: learn: 1740.4421277 total: 14.2s remaining: 23.9s
373: learn: 1740.1921007 total: 14.2s remaining: 23.8s
374: learn: 1739.7759459 total: 14.3s remaining: 23.8s
375: learn: 1739.5004514 total: 14.3s remaining: 23.8s
376: learn: 1739.2280361 total: 14.4s remaining: 23.7s
377: learn: 1739.0545965 total: 14.4s remaining: 23.7s
378: learn: 1738.8086327 total: 14.4s remaining: 23.6s
379: learn: 1738.6508553 total: 14.5s remaining: 23.6s
380: learn: 1738.3791908 total: 14.5s remaining: 23.6s
381: learn: 1738.1401524 total: 14.5s remaining: 23.5s
382: learn: 1737.8842934 total: 14.6s remaining: 23.5s
383: learn: 1737.6455247 total: 14.6s remaining: 23.5s
384: learn: 1737.4289805 total: 14.7s remaining: 23.4s
385: learn: 1737.1759950 total: 14.7s remaining: 23.4s
386: learn: 1736.9287996 total: 14.7s remaining: 23.4s
387: learn: 1736.6644316 total: 14.8s remaining: 23.3s
388: learn: 1736.4509275 total: 14.8s remaining: 23.3s
389: learn: 1736.1780686 total: 14.9s remaining: 23.2s
390: learn: 1735.8027451 total: 14.9s remaining: 23.2s
391: learn: 1735.5312872 total: 14.9s remaining: 23.2s
392: learn: 1735.2365895 total: 15s remaining: 23.1s
393: learn: 1735.0621982 total: 15s remaining: 23.1s
394: learn: 1734.7786646 total: 15.1s remaining: 23.1s
395: learn: 1734.5900719 total: 15.1s remaining: 23s
396: learn: 1734.4205195 total: 15.1s remaining: 23s
397: learn: 1734.1769668 total: 15.2s remaining: 22.9s
398: learn: 1734.0092385 total: 15.2s remaining: 22.9s
399: learn: 1733.6076731 total: 15.2s remaining: 22.9s
400: learn: 1733.4073943 total: 15.3s remaining: 22.8s
401: learn: 1733.1870464 total: 15.3s remaining: 22.8s
402: learn: 1732.8418426 total: 15.3s remaining: 22.7s
403: learn: 1732.5884280 total: 15.4s remaining: 22.7s
404: learn: 1732.4253999 total: 15.4s remaining: 22.7s
405: learn: 1732.2204470 total: 15.5s remaining: 22.6s
406: learn: 1732.0078576 total: 15.5s remaining: 22.6s
407: learn: 1731.6408685 total: 15.5s remaining: 22.6s
408: learn: 1731.4376410 total: 15.6s remaining: 22.5s
409: learn: 1731.0719856 total: 15.6s remaining: 22.5s
410: learn: 1730.9297863 total: 15.7s remaining: 22.4s
411: learn: 1730.5167411 total: 15.7s remaining: 22.4s
412: learn: 1730.2006985 total: 15.7s remaining: 22.4s
413: learn: 1729.9278694 total: 15.8s remaining: 22.3s
414: learn: 1729.6756361 total: 15.8s remaining: 22.3s
415: learn: 1729.4111341 total: 15.8s remaining: 22.2s
416: learn: 1729.2568988 total: 15.9s remaining: 22.2s
417: learn: 1729.0928255 total: 15.9s remaining: 22.2s
418: learn: 1728.8499582 total: 16s remaining: 22.1s
419: learn: 1728.5351801 total: 16s remaining: 22.1s
420: learn: 1728.2158585 total: 16s remaining: 22.1s
421: learn: 1728.0929619 total: 16.1s remaining: 22s
422: learn: 1727.9116979 total: 16.1s remaining: 22s
423: learn: 1727.6771975 total: 16.2s remaining: 21.9s
424: learn: 1727.4173729 total: 16.2s remaining: 21.9s
425: learn: 1727.0662389 total: 16.2s remaining: 21.9s
426: learn: 1726.8669824 total: 16.3s remaining: 21.8s
427: learn: 1726.6371360 total: 16.3s remaining: 21.8s
428: learn: 1726.3195048 total: 16.3s remaining: 21.7s
429: learn: 1726.0887469 total: 16.4s remaining: 21.7s
430: learn: 1725.8260628 total: 16.4s remaining: 21.7s
431: learn: 1725.5895624 total: 16.5s remaining: 21.6s
432: learn: 1725.2705483 total: 16.5s remaining: 21.6s
433: learn: 1725.1367573 total: 16.5s remaining: 21.5s
434: learn: 1725.0005454 total: 16.6s remaining: 21.5s
435: learn: 1724.8051876 total: 16.6s remaining: 21.5s
436: learn: 1724.6564043 total: 16.6s remaining: 21.4s
437: learn: 1724.5366264 total: 16.7s remaining: 21.4s
438: learn: 1724.2321711 total: 16.7s remaining: 21.4s
439: learn: 1724.0565394 total: 16.8s remaining: 21.3s
440: learn: 1723.8850055 total: 16.8s remaining: 21.3s
441: learn: 1723.6696154 total: 16.9s remaining: 21.3s
442: learn: 1723.3431246 total: 16.9s remaining: 21.3s
443: learn: 1723.1398505 total: 17s remaining: 21.2s
444: learn: 1722.8639785 total: 17s remaining: 21.2s
445: learn: 1722.6735897 total: 17.1s remaining: 21.2s
446: learn: 1722.5845354 total: 17.1s remaining: 21.1s
447: learn: 1722.4097049 total: 17.1s remaining: 21.1s
448: learn: 1722.1139844 total: 17.2s remaining: 21.1s
449: learn: 1721.7760568 total: 17.2s remaining: 21s
450: learn: 1721.4713080 total: 17.3s remaining: 21s
451: learn: 1721.2194677 total: 17.3s remaining: 21s
452: learn: 1721.0612090 total: 17.3s remaining: 20.9s
453: learn: 1720.9146539 total: 17.4s remaining: 20.9s
454: learn: 1720.8222587 total: 17.4s remaining: 20.9s
455: learn: 1720.6646628 total: 17.4s remaining: 20.8s
456: learn: 1720.4637749 total: 17.5s remaining: 20.8s
457: learn: 1720.2393639 total: 17.5s remaining: 20.7s
458: learn: 1720.1202312 total: 17.6s remaining: 20.7s
459: learn: 1719.7680282 total: 17.6s remaining: 20.7s
460: learn: 1719.5163737 total: 17.7s remaining: 20.6s
461: learn: 1719.3732885 total: 17.7s remaining: 20.6s
462: learn: 1719.2246511 total: 17.7s remaining: 20.6s
463: learn: 1719.1061951 total: 17.8s remaining: 20.5s
464: learn: 1718.8771668 total: 17.8s remaining: 20.5s
465: learn: 1718.6532539 total: 17.8s remaining: 20.4s
466: learn: 1718.4049513 total: 17.9s remaining: 20.4s
467: learn: 1718.2375973 total: 17.9s remaining: 20.4s
468: learn: 1717.9303183 total: 17.9s remaining: 20.3s
469: learn: 1717.7103214 total: 18s remaining: 20.3s
470: learn: 1717.4267298 total: 18s remaining: 20.2s
471: learn: 1717.1456832 total: 18.1s remaining: 20.2s
472: learn: 1716.9588359 total: 18.1s remaining: 20.2s
473: learn: 1716.8348814 total: 18.1s remaining: 20.1s
474: learn: 1716.5559279 total: 18.2s remaining: 20.1s
475: learn: 1716.3504419 total: 18.2s remaining: 20s
476: learn: 1716.2040290 total: 18.2s remaining: 20s
477: learn: 1716.0826465 total: 18.3s remaining: 20s
478: learn: 1715.9015271 total: 18.3s remaining: 19.9s
479: learn: 1715.7024150 total: 18.4s remaining: 19.9s
480: learn: 1715.6024799 total: 18.4s remaining: 19.8s
481: learn: 1715.3289656 total: 18.4s remaining: 19.8s
482: learn: 1715.2076024 total: 18.5s remaining: 19.8s
483: learn: 1714.9178652 total: 18.5s remaining: 19.7s
484: learn: 1714.7177816 total: 18.6s remaining: 19.7s
485: learn: 1714.4598430 total: 18.6s remaining: 19.7s
486: learn: 1714.0183643 total: 18.6s remaining: 19.6s
487: learn: 1713.7304333 total: 18.7s remaining: 19.6s
488: learn: 1713.5103897 total: 18.7s remaining: 19.6s
489: learn: 1713.3742397 total: 18.7s remaining: 19.5s
490: learn: 1713.2619764 total: 18.8s remaining: 19.5s
491: learn: 1713.0387966 total: 18.8s remaining: 19.4s
492: learn: 1712.9401211 total: 18.9s remaining: 19.4s
493: learn: 1712.7394449 total: 18.9s remaining: 19.4s
494: learn: 1712.5343663 total: 18.9s remaining: 19.3s
495: learn: 1712.3784743 total: 19s remaining: 19.3s
496: learn: 1712.0922978 total: 19s remaining: 19.2s
497: learn: 1711.8156402 total: 19s remaining: 19.2s
498: learn: 1711.6820771 total: 19.1s remaining: 19.2s
499: learn: 1711.4950015 total: 19.1s remaining: 19.1s
500: learn: 1711.2591853 total: 19.2s remaining: 19.1s
501: learn: 1711.0977516 total: 19.2s remaining: 19.1s
502: learn: 1710.9929387 total: 19.3s remaining: 19s
503: learn: 1710.8271099 total: 19.3s remaining: 19s
504: learn: 1710.6331287 total: 19.3s remaining: 18.9s
505: learn: 1710.4762621 total: 19.4s remaining: 18.9s
506: learn: 1710.3142589 total: 19.4s remaining: 18.9s
507: learn: 1710.1899185 total: 19.4s remaining: 18.8s
508: learn: 1709.9372884 total: 19.5s remaining: 18.8s
509: learn: 1709.7034273 total: 19.5s remaining: 18.8s
510: learn: 1709.5120325 total: 19.6s remaining: 18.7s
511: learn: 1709.2075357 total: 19.6s remaining: 18.7s
512: learn: 1709.0654959 total: 19.6s remaining: 18.6s
513: learn: 1708.8787820 total: 19.7s remaining: 18.6s
514: learn: 1708.6184315 total: 19.7s remaining: 18.6s
515: learn: 1708.5472845 total: 19.8s remaining: 18.5s
516: learn: 1708.4376861 total: 19.8s remaining: 18.5s
517: learn: 1708.2355679 total: 19.8s remaining: 18.5s
518: learn: 1707.9584908 total: 19.9s remaining: 18.4s
519: learn: 1707.6131821 total: 19.9s remaining: 18.4s
520: learn: 1707.3502514 total: 20s remaining: 18.4s
521: learn: 1707.1687955 total: 20s remaining: 18.3s
522: learn: 1706.8852222 total: 20s remaining: 18.3s
523: learn: 1706.7647810 total: 20.1s remaining: 18.2s
524: learn: 1706.6047831 total: 20.1s remaining: 18.2s
525: learn: 1706.4204895 total: 20.2s remaining: 18.2s
526: learn: 1706.2095678 total: 20.2s remaining: 18.1s
527: learn: 1706.0232433 total: 20.2s remaining: 18.1s
528: learn: 1705.7865371 total: 20.3s remaining: 18.1s
529: learn: 1705.6659996 total: 20.3s remaining: 18s
530: learn: 1705.5108255 total: 20.4s remaining: 18s
531: learn: 1705.2820013 total: 20.4s remaining: 18s
532: learn: 1705.0822526 total: 20.5s remaining: 17.9s
533: learn: 1704.9111084 total: 20.5s remaining: 17.9s
534: learn: 1704.7166620 total: 20.5s remaining: 17.9s
535: learn: 1704.5360805 total: 20.6s remaining: 17.8s
536: learn: 1704.3616382 total: 20.6s remaining: 17.8s
537: learn: 1704.2146442 total: 20.7s remaining: 17.7s
538: learn: 1704.0714488 total: 20.7s remaining: 17.7s
539: learn: 1703.8316317 total: 20.8s remaining: 17.7s
540: learn: 1703.5975953 total: 20.8s remaining: 17.7s
541: learn: 1703.4061100 total: 20.9s remaining: 17.6s
542: learn: 1703.2313359 total: 20.9s remaining: 17.6s
543: learn: 1703.0239437 total: 20.9s remaining: 17.6s
544: learn: 1702.8668595 total: 21s remaining: 17.5s
545: learn: 1702.7368019 total: 21s remaining: 17.5s
546: learn: 1702.5079268 total: 21s remaining: 17.4s
547: learn: 1702.4216445 total: 21.1s remaining: 17.4s
548: learn: 1702.2927510 total: 21.1s remaining: 17.4s
549: learn: 1702.0422832 total: 21.2s remaining: 17.3s
550: learn: 1701.8703780 total: 21.2s remaining: 17.3s
551: learn: 1701.7375122 total: 21.2s remaining: 17.2s
552: learn: 1701.6181835 total: 21.3s remaining: 17.2s
553: learn: 1701.5040375 total: 21.3s remaining: 17.2s
554: learn: 1701.3217843 total: 21.4s remaining: 17.1s
555: learn: 1701.1424688 total: 21.4s remaining: 17.1s
556: learn: 1700.8518772 total: 21.5s remaining: 17.1s
557: learn: 1700.6148405 total: 21.5s remaining: 17s
558: learn: 1700.4257132 total: 21.5s remaining: 17s
559: learn: 1700.3250255 total: 21.6s remaining: 17s
560: learn: 1700.1770679 total: 21.6s remaining: 16.9s
561: learn: 1700.0776019 total: 21.7s remaining: 16.9s
562: learn: 1699.9274944 total: 21.7s remaining: 16.8s
563: learn: 1699.7862868 total: 21.7s remaining: 16.8s
564: learn: 1699.5850276 total: 21.8s remaining: 16.8s
565: learn: 1699.3798315 total: 21.8s remaining: 16.7s
566: learn: 1699.2410570 total: 21.9s remaining: 16.7s
567: learn: 1699.0771009 total: 21.9s remaining: 16.7s
568: learn: 1698.9200611 total: 21.9s remaining: 16.6s
569: learn: 1698.8371874 total: 22s remaining: 16.6s
570: learn: 1698.6693974 total: 22s remaining: 16.5s
571: learn: 1698.4458230 total: 22.1s remaining: 16.5s
572: learn: 1698.2352671 total: 22.1s remaining: 16.5s
573: learn: 1698.0114403 total: 22.1s remaining: 16.4s
574: learn: 1697.9620283 total: 22.2s remaining: 16.4s
575: learn: 1697.7285149 total: 22.2s remaining: 16.4s
576: learn: 1697.5572914 total: 22.2s remaining: 16.3s
577: learn: 1697.2472830 total: 22.3s remaining: 16.3s
578: learn: 1697.0865106 total: 22.3s remaining: 16.2s
579: learn: 1696.8986570 total: 22.4s remaining: 16.2s
580: learn: 1696.6495019 total: 22.4s remaining: 16.2s
581: learn: 1696.5006199 total: 22.5s remaining: 16.1s
582: learn: 1696.3224090 total: 22.5s remaining: 16.1s
583: learn: 1696.1328786 total: 22.5s remaining: 16.1s
584: learn: 1695.9305801 total: 22.6s remaining: 16s
585: learn: 1695.7786486 total: 22.6s remaining: 16s
586: learn: 1695.6893543 total: 22.7s remaining: 15.9s
587: learn: 1695.6262466 total: 22.7s remaining: 15.9s
588: learn: 1695.4207369 total: 22.7s remaining: 15.9s
589: learn: 1695.3013015 total: 22.8s remaining: 15.8s
590: learn: 1695.1384591 total: 22.8s remaining: 15.8s
591: learn: 1694.9932710 total: 22.9s remaining: 15.8s
592: learn: 1694.7981887 total: 22.9s remaining: 15.7s
593: learn: 1694.6564635 total: 22.9s remaining: 15.7s
594: learn: 1694.2926821 total: 23s remaining: 15.6s
595: learn: 1694.1911682 total: 23s remaining: 15.6s
596: learn: 1694.0801305 total: 23.1s remaining: 15.6s
597: learn: 1693.9037712 total: 23.1s remaining: 15.5s
598: learn: 1693.6964583 total: 23.1s remaining: 15.5s
599: learn: 1693.5709800 total: 23.2s remaining: 15.4s
600: learn: 1693.4147224 total: 23.2s remaining: 15.4s
601: learn: 1693.2299947 total: 23.3s remaining: 15.4s
602: learn: 1693.0585101 total: 23.3s remaining: 15.3s
603: learn: 1692.8997478 total: 23.3s remaining: 15.3s
604: learn: 1692.7430051 total: 23.4s remaining: 15.3s
605: learn: 1692.6348260 total: 23.4s remaining: 15.2s
606: learn: 1692.4622758 total: 23.5s remaining: 15.2s
607: learn: 1692.3065340 total: 23.5s remaining: 15.1s
608: learn: 1692.1929430 total: 23.5s remaining: 15.1s
609: learn: 1691.9846774 total: 23.6s remaining: 15.1s
610: learn: 1691.8124788 total: 23.6s remaining: 15s
611: learn: 1691.4861328 total: 23.7s remaining: 15s
612: learn: 1691.3641961 total: 23.7s remaining: 15s
613: learn: 1691.2283038 total: 23.7s remaining: 14.9s
614: learn: 1691.1405414 total: 23.8s remaining: 14.9s
615: learn: 1690.8798935 total: 23.8s remaining: 14.8s
616: learn: 1690.7862335 total: 23.9s remaining: 14.8s
617: learn: 1690.6369271 total: 23.9s remaining: 14.8s
618: learn: 1690.4939458 total: 23.9s remaining: 14.7s
619: learn: 1690.4174686 total: 24s remaining: 14.7s
620: learn: 1690.2908262 total: 24s remaining: 14.7s
621: learn: 1690.0350903 total: 24s remaining: 14.6s
622: learn: 1689.9688565 total: 24.1s remaining: 14.6s
623: learn: 1689.7280056 total: 24.1s remaining: 14.5s
624: learn: 1689.5527882 total: 24.2s remaining: 14.5s
625: learn: 1689.3676756 total: 24.2s remaining: 14.5s
626: learn: 1689.1537142 total: 24.2s remaining: 14.4s
627: learn: 1688.9982296 total: 24.3s remaining: 14.4s
628: learn: 1688.7045118 total: 24.3s remaining: 14.3s
629: learn: 1688.5835104 total: 24.4s remaining: 14.3s
630: learn: 1688.4210762 total: 24.4s remaining: 14.3s
631: learn: 1688.3263688 total: 24.5s remaining: 14.2s
632: learn: 1688.2075667 total: 24.5s remaining: 14.2s
633: learn: 1687.9733608 total: 24.5s remaining: 14.2s
634: learn: 1687.8498311 total: 24.6s remaining: 14.1s
635: learn: 1687.6652688 total: 24.6s remaining: 14.1s
636: learn: 1687.4933491 total: 24.7s remaining: 14.1s
637: learn: 1687.3639066 total: 24.7s remaining: 14s
638: learn: 1687.2164424 total: 24.7s remaining: 14s
639: learn: 1687.1215159 total: 24.8s remaining: 13.9s
640: learn: 1686.9672682 total: 24.8s remaining: 13.9s
641: learn: 1686.7835279 total: 24.9s remaining: 13.9s
642: learn: 1686.6344900 total: 24.9s remaining: 13.8s
643: learn: 1686.4368296 total: 25s remaining: 13.8s
644: learn: 1686.1283055 total: 25s remaining: 13.8s
645: learn: 1686.0319744 total: 25s remaining: 13.7s
646: learn: 1685.8784097 total: 25.1s remaining: 13.7s
647: learn: 1685.7247837 total: 25.1s remaining: 13.6s
648: learn: 1685.6297880 total: 25.2s remaining: 13.6s
649: learn: 1685.4069375 total: 25.2s remaining: 13.6s
650: learn: 1685.2322691 total: 25.2s remaining: 13.5s
651: learn: 1685.0892882 total: 25.3s remaining: 13.5s
652: learn: 1684.9853738 total: 25.4s remaining: 13.5s
653: learn: 1684.8911601 total: 25.4s remaining: 13.4s
654: learn: 1684.7264021 total: 25.5s remaining: 13.4s
655: learn: 1684.6448773 total: 25.6s remaining: 13.4s
656: learn: 1684.4500992 total: 25.6s remaining: 13.4s
657: learn: 1684.2712591 total: 25.7s remaining: 13.3s
658: learn: 1684.0837157 total: 25.7s remaining: 13.3s
659: learn: 1683.9473053 total: 25.7s remaining: 13.3s
660: learn: 1683.8144984 total: 25.8s remaining: 13.2s
661: learn: 1683.7403280 total: 25.8s remaining: 13.2s
662: learn: 1683.5161112 total: 25.9s remaining: 13.2s
663: learn: 1683.3907945 total: 25.9s remaining: 13.1s
664: learn: 1683.2898509 total: 25.9s remaining: 13.1s
665: learn: 1683.0970672 total: 26s remaining: 13s
666: learn: 1683.0061456 total: 26s remaining: 13s
667: learn: 1682.9051575 total: 26.1s remaining: 12.9s
668: learn: 1682.7057448 total: 26.1s remaining: 12.9s
669: learn: 1682.5544938 total: 26.1s remaining: 12.9s
670: learn: 1682.3945318 total: 26.2s remaining: 12.8s
671: learn: 1682.2167941 total: 26.2s remaining: 12.8s
672: learn: 1682.0770457 total: 26.3s remaining: 12.8s
673: learn: 1681.8354251 total: 26.3s remaining: 12.7s
674: learn: 1681.6784281 total: 26.3s remaining: 12.7s
675: learn: 1681.4974934 total: 26.4s remaining: 12.6s
676: learn: 1681.3850834 total: 26.4s remaining: 12.6s
677: learn: 1681.2517942 total: 26.5s remaining: 12.6s
678: learn: 1681.1611254 total: 26.5s remaining: 12.5s
679: learn: 1681.0016668 total: 26.6s remaining: 12.5s
680: learn: 1680.8935747 total: 26.6s remaining: 12.5s
681: learn: 1680.8247735 total: 26.7s remaining: 12.4s
682: learn: 1680.7218487 total: 26.7s remaining: 12.4s
683: learn: 1680.5864594 total: 26.8s remaining: 12.4s
684: learn: 1680.4605058 total: 26.8s remaining: 12.3s
685: learn: 1680.2376068 total: 26.8s remaining: 12.3s
686: learn: 1680.1758320 total: 26.9s remaining: 12.2s
687: learn: 1680.0241639 total: 26.9s remaining: 12.2s
688: learn: 1679.8791839 total: 27s remaining: 12.2s
689: learn: 1679.7162481 total: 27s remaining: 12.1s
690: learn: 1679.5416180 total: 27s remaining: 12.1s
691: learn: 1679.4170630 total: 27.1s remaining: 12s
692: learn: 1679.2436408 total: 27.1s remaining: 12s
693: learn: 1679.1117381 total: 27.2s remaining: 12s
694: learn: 1678.9576004 total: 27.2s remaining: 11.9s
695: learn: 1678.8058421 total: 27.2s remaining: 11.9s
696: learn: 1678.6894377 total: 27.3s remaining: 11.9s
697: learn: 1678.5200190 total: 27.3s remaining: 11.8s
698: learn: 1678.3965343 total: 27.4s remaining: 11.8s
699: learn: 1678.2687540 total: 27.4s remaining: 11.7s
700: learn: 1678.0802346 total: 27.4s remaining: 11.7s
701: learn: 1677.8958989 total: 27.5s remaining: 11.7s
702: learn: 1677.7963547 total: 27.5s remaining: 11.6s
703: learn: 1677.6392694 total: 27.6s remaining: 11.6s
704: learn: 1677.4352800 total: 27.6s remaining: 11.5s
705: learn: 1677.3125238 total: 27.6s remaining: 11.5s
706: learn: 1677.1476560 total: 27.7s remaining: 11.5s
707: learn: 1677.0367564 total: 27.7s remaining: 11.4s
708: learn: 1676.9361584 total: 27.8s remaining: 11.4s
709: learn: 1676.8059478 total: 27.8s remaining: 11.4s
710: learn: 1676.7154256 total: 27.8s remaining: 11.3s
711: learn: 1676.6077365 total: 27.9s remaining: 11.3s
712: learn: 1676.4350408 total: 27.9s remaining: 11.2s
713: learn: 1676.3364161 total: 27.9s remaining: 11.2s
714: learn: 1676.1101897 total: 28s remaining: 11.2s
715: learn: 1675.9471705 total: 28s remaining: 11.1s
716: learn: 1675.7844364 total: 28.1s remaining: 11.1s
717: learn: 1675.6109474 total: 28.1s remaining: 11s
718: learn: 1675.4847957 total: 28.1s remaining: 11s
719: learn: 1675.3977002 total: 28.2s remaining: 11s
720: learn: 1675.3084707 total: 28.2s remaining: 10.9s
721: learn: 1675.1707373 total: 28.3s remaining: 10.9s
722: learn: 1675.1093974 total: 28.3s remaining: 10.8s
723: learn: 1674.8997906 total: 28.3s remaining: 10.8s
724: learn: 1674.8447168 total: 28.4s remaining: 10.8s
725: learn: 1674.7399367 total: 28.4s remaining: 10.7s
726: learn: 1674.6348980 total: 28.4s remaining: 10.7s
727: learn: 1674.5470940 total: 28.5s remaining: 10.6s
728: learn: 1674.4660068 total: 28.5s remaining: 10.6s
729: learn: 1674.3420098 total: 28.6s remaining: 10.6s
730: learn: 1674.2147016 total: 28.6s remaining: 10.5s
731: learn: 1674.1328517 total: 28.6s remaining: 10.5s
732: learn: 1673.9818478 total: 28.7s remaining: 10.4s
733: learn: 1673.8285175 total: 28.7s remaining: 10.4s
734: learn: 1673.6368248 total: 28.7s remaining: 10.4s
735: learn: 1673.4523845 total: 28.8s remaining: 10.3s
736: learn: 1673.3858658 total: 28.8s remaining: 10.3s
737: learn: 1673.1952204 total: 28.9s remaining: 10.2s
738: learn: 1672.9860140 total: 28.9s remaining: 10.2s
739: learn: 1672.8757114 total: 28.9s remaining: 10.2s
740: learn: 1672.6993988 total: 29s remaining: 10.1s
741: learn: 1672.6454698 total: 29s remaining: 10.1s
742: learn: 1672.5069602 total: 29.1s remaining: 10.1s
743: learn: 1672.4251156 total: 29.1s remaining: 10s
744: learn: 1672.3218743 total: 29.1s remaining: 9.97s
745: learn: 1672.2356822 total: 29.2s remaining: 9.93s
746: learn: 1672.0915272 total: 29.2s remaining: 9.9s
747: learn: 1671.8967974 total: 29.3s remaining: 9.86s
748: learn: 1671.8407001 total: 29.3s remaining: 9.81s
749: learn: 1671.7207630 total: 29.3s remaining: 9.78s
750: learn: 1671.4845382 total: 29.4s remaining: 9.73s
751: learn: 1671.3925004 total: 29.4s remaining: 9.69s
752: learn: 1671.2904745 total: 29.4s remaining: 9.65s
753: learn: 1671.1817530 total: 29.5s remaining: 9.61s
754: learn: 1671.0265159 total: 29.5s remaining: 9.58s
755: learn: 1670.9156212 total: 29.5s remaining: 9.54s
756: learn: 1670.8636604 total: 29.6s remaining: 9.49s
757: learn: 1670.7288488 total: 29.6s remaining: 9.46s
758: learn: 1670.5928166 total: 29.7s remaining: 9.41s
759: learn: 1670.4388169 total: 29.7s remaining: 9.38s
760: learn: 1670.2313387 total: 29.7s remaining: 9.34s
761: learn: 1670.1281205 total: 29.8s remaining: 9.29s
762: learn: 1670.0122737 total: 29.8s remaining: 9.26s
763: learn: 1669.9326477 total: 29.8s remaining: 9.21s
764: learn: 1669.7738884 total: 29.9s remaining: 9.17s
765: learn: 1669.5812741 total: 29.9s remaining: 9.14s
766: learn: 1669.4864356 total: 29.9s remaining: 9.09s
767: learn: 1669.4404012 total: 30s remaining: 9.05s
768: learn: 1669.2543329 total: 30s remaining: 9.02s
769: learn: 1669.0674034 total: 30s remaining: 8.97s
770: learn: 1668.9608453 total: 30.1s remaining: 8.93s
771: learn: 1668.8669561 total: 30.1s remaining: 8.89s
772: learn: 1668.7490347 total: 30.1s remaining: 8.85s
773: learn: 1668.6607003 total: 30.2s remaining: 8.81s
774: learn: 1668.5564180 total: 30.2s remaining: 8.78s
775: learn: 1668.4903669 total: 30.3s remaining: 8.73s
776: learn: 1668.4272804 total: 30.3s remaining: 8.7s
777: learn: 1668.3239406 total: 30.3s remaining: 8.66s
778: learn: 1668.2659643 total: 30.4s remaining: 8.62s
779: learn: 1668.1750383 total: 30.4s remaining: 8.58s
780: learn: 1668.0925076 total: 30.4s remaining: 8.54s
781: learn: 1668.0232905 total: 30.5s remaining: 8.5s
782: learn: 1667.8234460 total: 30.5s remaining: 8.46s
783: learn: 1667.5820075 total: 30.6s remaining: 8.42s
784: learn: 1667.4734628 total: 30.6s remaining: 8.38s
785: learn: 1667.3592407 total: 30.6s remaining: 8.34s
786: learn: 1667.2361999 total: 30.7s remaining: 8.3s
787: learn: 1667.1536925 total: 30.7s remaining: 8.26s
788: learn: 1667.0105916 total: 30.8s remaining: 8.22s
789: learn: 1666.9582421 total: 30.8s remaining: 8.18s
790: learn: 1666.8017005 total: 30.8s remaining: 8.14s
791: learn: 1666.6900655 total: 30.9s remaining: 8.11s
792: learn: 1666.5414016 total: 30.9s remaining: 8.07s
793: learn: 1666.4293517 total: 30.9s remaining: 8.03s
794: learn: 1666.2746960 total: 31s remaining: 7.99s
795: learn: 1666.1624518 total: 31s remaining: 7.95s
796: learn: 1666.0229459 total: 31.1s remaining: 7.91s
797: learn: 1665.9226514 total: 31.1s remaining: 7.87s
798: learn: 1665.8103572 total: 31.1s remaining: 7.83s
799: learn: 1665.7351465 total: 31.2s remaining: 7.79s
800: learn: 1665.6280624 total: 31.2s remaining: 7.75s
801: learn: 1665.4438989 total: 31.2s remaining: 7.71s
802: learn: 1665.3764375 total: 31.3s remaining: 7.67s
803: learn: 1665.2819024 total: 31.3s remaining: 7.63s
804: learn: 1665.1838539 total: 31.3s remaining: 7.59s
805: learn: 1665.0629147 total: 31.4s remaining: 7.55s
806: learn: 1664.9524694 total: 31.4s remaining: 7.51s
807: learn: 1664.9092102 total: 31.5s remaining: 7.47s
808: learn: 1664.8031237 total: 31.5s remaining: 7.43s
809: learn: 1664.7098368 total: 31.5s remaining: 7.39s
810: learn: 1664.6523562 total: 31.6s remaining: 7.35s
811: learn: 1664.5839101 total: 31.6s remaining: 7.31s
812: learn: 1664.4589302 total: 31.6s remaining: 7.27s
813: learn: 1664.3875261 total: 31.7s remaining: 7.24s
814: learn: 1664.3105962 total: 31.7s remaining: 7.2s
815: learn: 1664.2588160 total: 31.7s remaining: 7.15s
816: learn: 1664.0818948 total: 31.8s remaining: 7.11s
817: learn: 1663.9482962 total: 31.8s remaining: 7.07s
818: learn: 1663.7970567 total: 31.8s remaining: 7.04s
819: learn: 1663.6541816 total: 31.9s remaining: 7s
820: learn: 1663.4795958 total: 31.9s remaining: 6.96s
821: learn: 1663.2679883 total: 32s remaining: 6.92s
822: learn: 1663.1442857 total: 32s remaining: 6.88s
823: learn: 1663.0255818 total: 32s remaining: 6.84s
824: learn: 1662.9347651 total: 32.1s remaining: 6.8s
825: learn: 1662.7862990 total: 32.1s remaining: 6.76s
826: learn: 1662.7249768 total: 32.1s remaining: 6.72s
827: learn: 1662.6156137 total: 32.2s remaining: 6.68s
828: learn: 1662.5073758 total: 32.2s remaining: 6.64s
829: learn: 1662.4122239 total: 32.2s remaining: 6.6s
830: learn: 1662.3202180 total: 32.3s remaining: 6.56s
831: learn: 1662.1821761 total: 32.3s remaining: 6.52s
832: learn: 1662.0872805 total: 32.3s remaining: 6.49s
833: learn: 1661.9780387 total: 32.4s remaining: 6.45s
834: learn: 1661.8551608 total: 32.4s remaining: 6.41s
835: learn: 1661.7299061 total: 32.5s remaining: 6.37s
836: learn: 1661.6226776 total: 32.5s remaining: 6.33s
837: learn: 1661.5175607 total: 32.5s remaining: 6.29s
838: learn: 1661.4005224 total: 32.6s remaining: 6.25s
839: learn: 1661.2881224 total: 32.6s remaining: 6.21s
840: learn: 1661.1634719 total: 32.6s remaining: 6.17s
841: learn: 1661.0212829 total: 32.7s remaining: 6.13s
842: learn: 1660.9705221 total: 32.7s remaining: 6.09s
843: learn: 1660.8269297 total: 32.8s remaining: 6.05s
844: learn: 1660.7710185 total: 32.8s remaining: 6.01s
845: learn: 1660.7101926 total: 32.8s remaining: 5.98s
846: learn: 1660.6050936 total: 32.9s remaining: 5.94s
847: learn: 1660.4695481 total: 32.9s remaining: 5.9s
848: learn: 1660.3535390 total: 32.9s remaining: 5.86s
849: learn: 1660.2096117 total: 33s remaining: 5.82s
850: learn: 1660.0370291 total: 33s remaining: 5.78s
851: learn: 1659.8604050 total: 33s remaining: 5.74s
852: learn: 1659.7291276 total: 33.1s remaining: 5.7s
853: learn: 1659.6404716 total: 33.1s remaining: 5.66s
854: learn: 1659.5241863 total: 33.2s remaining: 5.62s
855: learn: 1659.4011182 total: 33.2s remaining: 5.58s
856: learn: 1659.3228199 total: 33.2s remaining: 5.54s
857: learn: 1659.2441871 total: 33.3s remaining: 5.5s
858: learn: 1659.1544882 total: 33.3s remaining: 5.46s
859: learn: 1659.0466642 total: 33.3s remaining: 5.42s
860: learn: 1658.9797395 total: 33.4s remaining: 5.38s
861: learn: 1658.8539859 total: 33.4s remaining: 5.35s
862: learn: 1658.7501992 total: 33.4s remaining: 5.31s
863: learn: 1658.6791128 total: 33.5s remaining: 5.27s
864: learn: 1658.6117976 total: 33.5s remaining: 5.23s
865: learn: 1658.5427267 total: 33.5s remaining: 5.19s
866: learn: 1658.3896135 total: 33.6s remaining: 5.15s
867: learn: 1658.2685957 total: 33.6s remaining: 5.11s
868: learn: 1658.1483773 total: 33.7s remaining: 5.07s
869: learn: 1658.1136286 total: 33.7s remaining: 5.03s
870: learn: 1657.9893127 total: 33.7s remaining: 4.99s
871: learn: 1657.9530228 total: 33.8s remaining: 4.95s
872: learn: 1657.8841781 total: 33.8s remaining: 4.92s
873: learn: 1657.8441870 total: 33.8s remaining: 4.88s
874: learn: 1657.7298265 total: 33.9s remaining: 4.84s
875: learn: 1657.5645105 total: 33.9s remaining: 4.8s
876: learn: 1657.4149168 total: 33.9s remaining: 4.76s
877: learn: 1657.2922775 total: 34s remaining: 4.72s
878: learn: 1657.2065193 total: 34s remaining: 4.68s
879: learn: 1657.0564731 total: 34s remaining: 4.64s
880: learn: 1656.9803490 total: 34.1s remaining: 4.6s
881: learn: 1656.8775548 total: 34.1s remaining: 4.56s
882: learn: 1656.7923397 total: 34.1s remaining: 4.52s
883: learn: 1656.6830786 total: 34.2s remaining: 4.49s
884: learn: 1656.5719416 total: 34.2s remaining: 4.45s
885: learn: 1656.4009333 total: 34.3s remaining: 4.41s
886: learn: 1656.2932785 total: 34.3s remaining: 4.37s
887: learn: 1656.1893944 total: 34.3s remaining: 4.33s
888: learn: 1656.0869241 total: 34.4s remaining: 4.29s
889: learn: 1655.9653013 total: 34.4s remaining: 4.25s
890: learn: 1655.8005605 total: 34.4s remaining: 4.21s
891: learn: 1655.7291182 total: 34.5s remaining: 4.17s
892: learn: 1655.6244260 total: 34.5s remaining: 4.14s
893: learn: 1655.5210290 total: 34.6s remaining: 4.1s
894: learn: 1655.4644645 total: 34.6s remaining: 4.06s
895: learn: 1655.4008028 total: 34.6s remaining: 4.02s
896: learn: 1655.3411920 total: 34.7s remaining: 3.98s
897: learn: 1655.2021571 total: 34.7s remaining: 3.94s
898: learn: 1655.1483780 total: 34.7s remaining: 3.9s
899: learn: 1655.0558898 total: 34.8s remaining: 3.86s
900: learn: 1655.0051558 total: 34.8s remaining: 3.82s
901: learn: 1654.9429659 total: 34.8s remaining: 3.79s
902: learn: 1654.8447666 total: 34.9s remaining: 3.75s
903: learn: 1654.6648911 total: 34.9s remaining: 3.71s
904: learn: 1654.5540094 total: 35s remaining: 3.67s
905: learn: 1654.4748853 total: 35s remaining: 3.63s
906: learn: 1654.3005618 total: 35s remaining: 3.59s
907: learn: 1654.2435769 total: 35.1s remaining: 3.55s
908: learn: 1654.1453072 total: 35.1s remaining: 3.51s
909: learn: 1654.0064250 total: 35.1s remaining: 3.48s
910: learn: 1653.9616946 total: 35.2s remaining: 3.44s
911: learn: 1653.7641910 total: 35.2s remaining: 3.4s
912: learn: 1653.6989258 total: 35.3s remaining: 3.36s
913: learn: 1653.6453149 total: 35.3s remaining: 3.32s
914: learn: 1653.5486930 total: 35.3s remaining: 3.28s
915: learn: 1653.4114197 total: 35.4s remaining: 3.24s
916: learn: 1653.3095058 total: 35.4s remaining: 3.2s
917: learn: 1653.1816451 total: 35.4s remaining: 3.17s
918: learn: 1653.0882668 total: 35.5s remaining: 3.13s
919: learn: 1652.9353790 total: 35.5s remaining: 3.09s
920: learn: 1652.7593966 total: 35.5s remaining: 3.05s
921: learn: 1652.6690695 total: 35.6s remaining: 3.01s
922: learn: 1652.6176983 total: 35.6s remaining: 2.97s
923: learn: 1652.5320858 total: 35.7s remaining: 2.93s
924: learn: 1652.4458549 total: 35.7s remaining: 2.89s
925: learn: 1652.3911495 total: 35.7s remaining: 2.85s
926: learn: 1652.2986861 total: 35.8s remaining: 2.82s
927: learn: 1652.1576076 total: 35.8s remaining: 2.78s
928: learn: 1652.0645619 total: 35.8s remaining: 2.74s
929: learn: 1651.9870058 total: 35.9s remaining: 2.7s
930: learn: 1651.9224912 total: 35.9s remaining: 2.66s
931: learn: 1651.8234396 total: 36s remaining: 2.62s
932: learn: 1651.7612482 total: 36s remaining: 2.58s
933: learn: 1651.7129760 total: 36s remaining: 2.54s
934: learn: 1651.6155328 total: 36.1s remaining: 2.51s
935: learn: 1651.4623266 total: 36.1s remaining: 2.47s
936: learn: 1651.3770334 total: 36.1s remaining: 2.43s
937: learn: 1651.2849192 total: 36.2s remaining: 2.39s
938: learn: 1651.2420981 total: 36.2s remaining: 2.35s
939: learn: 1651.1610870 total: 36.2s remaining: 2.31s
940: learn: 1651.0465573 total: 36.3s remaining: 2.27s
941: learn: 1650.9578085 total: 36.3s remaining: 2.24s
942: learn: 1650.8343009 total: 36.4s remaining: 2.2s
943: learn: 1650.7619780 total: 36.4s remaining: 2.16s
944: learn: 1650.5560382 total: 36.5s remaining: 2.12s
945: learn: 1650.5123775 total: 36.5s remaining: 2.08s
946: learn: 1650.4054168 total: 36.6s remaining: 2.04s
947: learn: 1650.2885719 total: 36.6s remaining: 2.01s
948: learn: 1650.1734628 total: 36.6s remaining: 1.97s
949: learn: 1650.0581258 total: 36.7s remaining: 1.93s
950: learn: 1649.9169632 total: 36.7s remaining: 1.89s
951: learn: 1649.8252828 total: 36.7s remaining: 1.85s
952: learn: 1649.7296482 total: 36.8s remaining: 1.81s
953: learn: 1649.6505258 total: 36.8s remaining: 1.77s
954: learn: 1649.5890916 total: 36.9s remaining: 1.74s
955: learn: 1649.4368426 total: 36.9s remaining: 1.7s
956: learn: 1649.3196911 total: 36.9s remaining: 1.66s
957: learn: 1649.2532661 total: 37s remaining: 1.62s
958: learn: 1649.2175616 total: 37s remaining: 1.58s
959: learn: 1649.0834561 total: 37s remaining: 1.54s
960: learn: 1649.0037356 total: 37.1s remaining: 1.5s
961: learn: 1648.8409269 total: 37.1s remaining: 1.47s
962: learn: 1648.7188453 total: 37.1s remaining: 1.43s
963: learn: 1648.6059574 total: 37.2s remaining: 1.39s
964: learn: 1648.5285705 total: 37.2s remaining: 1.35s
965: learn: 1648.3602970 total: 37.3s remaining: 1.31s
966: learn: 1648.1969677 total: 37.3s remaining: 1.27s
967: learn: 1648.0400003 total: 37.3s remaining: 1.23s
968: learn: 1647.9618039 total: 37.4s remaining: 1.2s
969: learn: 1647.8484358 total: 37.4s remaining: 1.16s
970: learn: 1647.7433993 total: 37.5s remaining: 1.12s
971: learn: 1647.5803916 total: 37.5s remaining: 1.08s
972: learn: 1647.4964278 total: 37.5s remaining: 1.04s
973: learn: 1647.3827909 total: 37.6s remaining: 1s
974: learn: 1647.2962397 total: 37.6s remaining: 964ms
975: learn: 1647.1139250 total: 37.6s remaining: 926ms
976: learn: 1646.9720188 total: 37.7s remaining: 887ms
977: learn: 1646.8701372 total: 37.7s remaining: 849ms
978: learn: 1646.7621446 total: 37.8s remaining: 810ms
979: learn: 1646.5576286 total: 37.8s remaining: 772ms
980: learn: 1646.4652620 total: 37.8s remaining: 733ms
981: learn: 1646.3408469 total: 37.9s remaining: 694ms
982: learn: 1646.1384320 total: 37.9s remaining: 656ms
983: learn: 1646.0612687 total: 38s remaining: 617ms
984: learn: 1645.8514629 total: 38s remaining: 579ms
985: learn: 1645.7763870 total: 38.1s remaining: 540ms
986: learn: 1645.7180827 total: 38.1s remaining: 502ms
987: learn: 1645.5174151 total: 38.1s remaining: 463ms
988: learn: 1645.4243853 total: 38.2s remaining: 424ms
989: learn: 1645.3219164 total: 38.2s remaining: 386ms
990: learn: 1645.1874401 total: 38.2s remaining: 347ms
991: learn: 1645.1293047 total: 38.3s remaining: 309ms
992: learn: 1645.0970315 total: 38.3s remaining: 270ms
993: learn: 1644.9962728 total: 38.3s remaining: 231ms
994: learn: 1644.8872127 total: 38.4s remaining: 193ms
995: learn: 1644.8296122 total: 38.4s remaining: 154ms
996: learn: 1644.7116419 total: 38.5s remaining: 116ms
997: learn: 1644.6253627 total: 38.5s remaining: 77.2ms
998: learn: 1644.4871057 total: 38.5s remaining: 38.6ms
999: learn: 1644.4227966 total: 38.6s remaining: 0us
Модель : CatBoostRegressor
RMSE : 1726.4647502068021
Время : 204.62451720237732 секунд
Параметры:
Pipeline(steps=[('preprocessor',
ColumnTransformer(transformers=[('pipeline',
Pipeline(steps=[('standardscaler',
StandardScaler())]),
Index(['vehicle_type', 'registration_year', 'gearbox', 'power', 'model',
'kilometer', 'fuel_type', 'brand', 'repaired'],
dtype='object'))])),
('regressor',
<catboost.core.CatBoostRegressor object at 0x7fa94bf40310>)])
--------------------
# LGBMRegressor
data_grids, data_times = grids_LGBMRegressor(
features_train,
features_test,
target_train,
target_test,
data_grids,
data_times
)
print_model_result(data_grids, data_times, 'LGBMRegressor')
Модель : LGBMRegressor
RMSE : 4384.374489966158
Время : 322.27989077568054 секунд
Параметры:
Pipeline(steps=[('preprocessor',
ColumnTransformer(transformers=[('pipeline',
Pipeline(steps=[('standardscaler',
StandardScaler())]),
Index(['vehicle_type', 'registration_year', 'gearbox', 'power', 'model',
'kilometer', 'fuel_type', 'brand', 'repaired'],
dtype='object'))])),
('regressor',
LGBMRegressor(max_depth=1, n_estimators=1, random_state=42))])
--------------------
Выбор лучшей модели¶
# Лучшая модель из расчета RMSE
data_grids_best = data_grids[0]
data_times_best = data_times[0]
n = 0
for i in range(0, len(data_grids)-1):
if data_grids[i].best_score_ < data_grids_best.best_score_:
#if (data_grids[i].best_score_ < data_grids_best.best_score_) & (data_times[i] < data_times_best):
data_grids_best = data_grids[i]
data_times_best = data_times[i]
print('Лучшее время : ', data_times_best)
print('Лучшее RMSE : ', data_grids_best.best_score_)
print('Лучшая модель: ')
data_grids_best
Лучшее время : 204.62451720237732 Лучшее RMSE : 1726.4647502068021 Лучшая модель:
HalvingGridSearchCV(cv=4, error_score='raise',
estimator=Pipeline(steps=[('preprocessor',
ColumnTransformer(transformers=[('pipeline',
Pipeline(steps=[('standardscaler',
StandardScaler())]),
Index(['vehicle_type', 'registration_year', 'gearbox', 'power', 'model',
'kilometer', 'fuel_type', 'brand', 'repaired'],
dtype='object'))])),
('regressor',
<catboost.core.CatBoostRegressor object at 0x7fa950219220>)]),
n_jobs=-1,
param_grid=[{'regressor': [<catboost.core.CatBoostRegressor object at 0x7fa950219220>]}],
random_state=42,
refit=<function _refit_callable at 0x7fa95cd84f70>,
scoring=make_scorer(mean_squared_error, squared=False))
start_time = time.time()
# Предсказание лучшей модели
predict = data_grids_best.predict(features_test)
finish_time = time.time()
funtion_time = finish_time - start_time
# Расчет RMSE и времени выполнения предсказания
print('RMSE =', mean_squared_error(target_test, predict, squared=False))
print(f'Время предсказания = {funtion_time} секунд')
RMSE = 1709.3459181142257 Время предсказания = 0.3003842830657959 секунд
Анализ моделей¶
Для использования в данном проекте были выбраны следующие модели: LinearRegression в качестве дамми-модели, DecisionTreeRegressor, SGDRegressor, CatBoostRegressor от Яндекса и LGBMRegressor.
По критерию минимального параметра RMSE в качестве лучшей модели после обучения была выбрана модель CatBoostRegressor с параметрами по-умолчанию. Ее показатели на обучающей выборке:
RMSE : 1726.4647502068021
Время: 178.93473863601685 секунд
При предсказании на тестовых данных эта модель показала хорошие результаты:
RMSE : 1709.3459181142257
Время: 0.128037691116333 секунд
RMSE оказался близким к тому, что было получено при обучении, а время предсказания многократно меньше обучения. Учитывая тот факт, что заказчика интересуют время обучения и предсказания, но отсутствуют точные критерии требуемого времени, а RMSE выбранной модели, как и требуется, меньше 2500, то для эксплуатации предлагается модель CatBoostRegressor с параметрами по-умолчанию.
Выводы проекта¶
Цель проекта достигнута. Выбрана модель CatBoostRegressor() с параметрами по-умолчанию для предсказания цены подержанных автомобилей по их параметрам. Для этого были выполнены следующие действия:
- Загружены и проканализированы данные.
- Выполнена предварительная обработка данных.
- Данные подготовлены к машинному обучению.
- Обучены несколько моделей, включая
LGBMRegressorи одна не бустинговая модель. - Выбрана лучшая модель по критериям заказчика, включая минимальное время обучения и предсказания, а также RMSE меньшее 2500.
- Проанализированы результаты обучения и предсказания и сделаны выводы.
Чек-лист проверки¶
Поставьте ‘x’ в выполненных пунктах. Далее нажмите Shift+Enter.
- [x] Jupyter Notebook открыт
- [x] Весь код выполняется без ошибок
- [x] Ячейки с кодом расположены в порядке исполнения
- [x] Выполнена загрузка и подготовка данных
- [x] Выполнено обучение моделей
- [x] Есть анализ скорости работы и качества моделей
